Regen D M
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.
Ann Biomed Eng. 1988;16(6):573-88. doi: 10.1007/BF02368016.
Important hydrodynamic characteristics of a heart chamber are isometric pressures at operating distensions, compliances at operating distensions, and wall-displacement resistances at operating distensions. Wall-displacement resistance is the pressure change relative to the rate of cavity-volume change causing the pressure change. Another chamber characteristic is the dependence of wall-displacement resistance on distension. Equations were derived showing dependences of hydrodynamic characteristics on dimensions and mechanical properties of a thick-walled sphere whose inner and outer fibers are comparably stretched at operating distensions. Equations could be arranged so as to identify midwall elements whose enclosed volumes best express distension. If the appropriate midwall volume is used to express distension, then the fractional change of any intensive variable (pressure, apparent average stress, apparent midwall stress, wall-displacement resistance, volume-normalized wall-displacement resistance, apparent average viscosity, apparent midwall viscosity) depends simply on a property of the wall elements and fractional distension change or fractional rate of distension change. The apparent average stress or viscosity calculated with the assumption that the quantity is uniformly distributed is virtually the value of the quantity in the midwall element. These principles should be useful in characterizing normal and abnormal myocardium in situ.
心脏腔室的重要流体动力学特性包括工作扩张时的等容压力、工作扩张时的顺应性以及工作扩张时的壁位移阻力。壁位移阻力是相对于引起压力变化的腔室容积变化率的压力变化。另一个腔室特性是壁位移阻力对扩张的依赖性。推导了一些方程,这些方程表明流体动力学特性与厚壁球体的尺寸和力学性能之间的关系,该厚壁球体的内外纤维在工作扩张时被同等程度地拉伸。可以对方程进行整理,以确定其封闭体积最能体现扩张的中壁单元。如果使用合适的中壁体积来表示扩张,那么任何强度变量(压力、表观平均应力、表观中壁应力、壁位移阻力、体积归一化壁位移阻力、表观平均粘度、表观中壁粘度)的分数变化仅取决于壁单元的特性以及分数扩张变化或分数扩张变化率。在假设量均匀分布的情况下计算出的表观平均应力或粘度实际上就是中壁单元中该量的值。这些原理在原位表征正常和异常心肌方面应该是有用的。