Maurer C R, Regen D M
J Theor Biol. 1986 May 7;120(1):1-29. doi: 10.1016/s0022-5193(86)80015-7.
A heart chamber undergoes eccentric hypertrophy in response to a chronic elevation of stroke-displacement demand, and it undergoes concentric hypertrophy in response to a chronic elevation of systolic-pressure demand. Both of these adaptations, which occur in various combinations, involve two myocardial plastic properties, "stretch normalization" and "stress normalization". We have developed a model which predicts dimensions and dynamics of the left ventricle as functions of myocardial properties and of the loads to which the chamber is adapted. The model involves: a stress-normalization rule which describes how myocardial volume depends on average systolic pressure, cavity volumes and the responsiveness of growth to stress; a stretch-normalization rule which describes how the cavity volume of standard stretch relates to average end-diastolic and end-systolic volumes; and a pressure-volume-curve equation giving isometric pressures as functions of cavity volume and myocardial volume relative to standard-stretch cavity volume, and elastic properties including contractility. The model shows how the relations among average dimensions, dynamics and loads depend on myocardial properties, particularly contractility and the growth response to stress. These properties are the main determinants of myocardial performance. In addition to the load adaptations mentioned above, the model predicts eccentric hypertrophy incident to reduced contractility, chronic dilation incident to reduced growth response to stress, myocardial stricture incident to excessive growth response to stress, and concentric hypertrophy (similar to high-pressure adaptation) incident to deposition of inert material. It allows some refinements in the evaluation of myocardial performance and in the evaluation of the abnormal properties responsible for abnormal performance.
心脏腔室会因长期增加的冲程位移需求而发生离心性肥大,并因长期增加的收缩压需求而发生向心性肥大。这两种适应方式以各种组合形式出现,都涉及两种心肌可塑性特性,即“拉伸归一化”和“应力归一化”。我们开发了一个模型,该模型可预测左心室的尺寸和动力学,将其作为心肌特性以及腔室所适应的负荷的函数。该模型包括:一个应力归一化规则,描述心肌体积如何取决于平均收缩压、腔室体积以及生长对应力的反应性;一个拉伸归一化规则,描述标准拉伸的腔室体积与平均舒张末期和收缩末期体积之间的关系;以及一个压力 - 体积曲线方程,给出等容压力作为腔室体积和相对于标准拉伸腔室体积的心肌体积的函数,以及包括收缩性在内的弹性特性。该模型展示了平均尺寸、动力学和负荷之间的关系如何取决于心肌特性,特别是收缩性和生长对应力的反应。这些特性是心肌性能的主要决定因素。除了上述的负荷适应情况外,该模型还预测了因收缩性降低而导致的离心性肥大、因生长对应力的反应降低而导致的慢性扩张、因生长对应力的反应过度而导致的心肌狭窄,以及因惰性物质沉积而导致的向心性肥大(类似于高压适应)。它允许在评估心肌性能以及评估导致异常性能的异常特性方面进行一些改进。