Dong Shilian, Zhang Xiaolei, Li Qian, Liu Chuandong, Ye Tianyu, Liu Jiangchao, Xu Hang, Zhang Xingang, Liu Jing, Jiang Changzhong, Xue Longjian, Yang Shikuan, Xiao Xiangheng
Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and Su Zhou Institute, Wuhan University, Wuhan, 430072, P. R. China.
The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China.
Small. 2020 May;16(19):e2000779. doi: 10.1002/smll.202000779. Epub 2020 Apr 13.
The skin of springtails is well-known for being able to repel water and organic liquids using their hexagonally arranged protrusions with reentrant structures. Here, a method to prepare 100 nm-sized nanohoodoo arrays with quasi-doubly reentrant structures over square centimeters through combining the nanosphere lithography and the template-protected selective reactive ion etching technique is demonstrated. The top size of the nanohoodoos, the intra-nanohoodoo distance, and the height of the nanohoodoos can be readily controlled by the plasma-etching time of the polystyrene (PS) spheres, the size of the PS spheres used, and the reactive ion etching time of silicon. The strong structural control capability allows for the study of the relationship between the nanohoodoo structure and the wetting property. Superamphiphobic nanohoodoo arrays with outstanding water/organic liquid repellent properties are finally obtained. The superamphiphobic and liquid repellent properties endow the nanohoodoo arrays with remarkable self-cleaning performance even using hot water droplets, anti-fogging performance, and the surface-enhanced Raman scattering sensitivity improvement by enriching the analyte molecules on the nanohoodoo arrays. Overall, the simple and massive production of the superamphiphobic nanohoodoo structures will push their practical application processes in diverse fields where wettability and liquid repellency need to be carefully engineered.
跳虫的皮肤以能够利用其具有凹腔结构的六边形排列的突起排斥水和有机液体而闻名。在此,展示了一种通过结合纳米球光刻技术和模板保护的选择性反应离子蚀刻技术,在平方厘米范围内制备具有准双凹腔结构的100纳米尺寸纳米石林阵列的方法。纳米石林的顶部尺寸、纳米石林内部的间距以及纳米石林的高度可以通过聚苯乙烯(PS)球的等离子体蚀刻时间、所用PS球的尺寸以及硅的反应离子蚀刻时间轻松控制。强大的结构控制能力使得能够研究纳米石林结构与润湿性之间的关系。最终获得了具有出色的拒水/拒有机液体性能的超双疏纳米石林阵列。超双疏和拒液性能赋予纳米石林阵列即使使用热水滴也具有显著的自清洁性能、防雾性能,以及通过在纳米石林阵列上富集分析物分子来提高表面增强拉曼散射灵敏度。总体而言,超双疏纳米石林结构的简单大规模制备将推动它们在需要精心设计润湿性和拒液性的各种领域中的实际应用进程。