Lu Weixi, Luo Jian, Zhuang Yuyang, Liang Jie, Xiong Min, Liu Hui, Zhou Lin
College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China.
Adv Sci (Weinh). 2025 Jun;12(23):e2500062. doi: 10.1002/advs.202500062. Epub 2025 May 8.
Plasmonic nanostructures have aroused tremendous excitement in extreme light matter interactions because of efficient light harvesting and nanometer field concentration, ideal for solar thermal conversion, photocatalysis, photodetection, etc. Here a 3D self-assembled plasmonic nanostructure is reported for ultrasensitive SERS detection of hierarchical micro-nano plastic pollutants ranging from 30 nm to microns by rationally integrating high density of both surface and volumetric hot spots into one structure, enabled by V-shaped close-packed bi-metallic nanoparticles with massive nanovoids across transverse and longitudinal areas. The unique bi-metallic structure of hollow nanocones can enable an enhancement factor up to 1.1 × 10 as well as self-built enrichment of targeting hierarchical analytes toward the size-matched hot spot areas, resulting in not only race detection of micro-nano plastics with concentration down to 10 g L but also universal adaptability to simultaneous detection of a broad range of pollutants beyond micro-nano plastics. The results offer a practical solution for trace detection of hierarchical micro-nano plastics and other mixed aqueous pollutants, demonstrating considerable potential for combating water pollution.
等离子体纳米结构因其高效的光捕获和纳米级场集中,在极端光与物质相互作用中引起了极大的关注,非常适合太阳能热转换、光催化、光检测等领域。本文报道了一种三维自组装等离子体纳米结构,通过将高密度的表面和体相热点合理整合到一个结构中,实现了对30纳米至微米级分层微纳塑料污染物的超灵敏表面增强拉曼散射(SERS)检测,该结构由具有大量横向和纵向纳米空隙的V形密排双金属纳米颗粒构成。中空纳米锥独特的双金属结构能够实现高达1.1×10的增强因子,以及目标分层分析物向尺寸匹配热点区域的自组装富集,不仅能够检测浓度低至10微克/升的微纳塑料,还能普遍适用于同时检测微纳塑料以外的多种污染物。这些结果为分层微纳塑料和其他混合水污染物的痕量检测提供了一种实用解决方案,展示了在对抗水污染方面的巨大潜力。