Suppr超能文献

肌动球蛋白收缩性与微管聚合之间的平衡调节着分层突出,这些突出控制着有效的成纤维细胞 - 胶原蛋白相互作用。

The Balance between Actomyosin Contractility and Microtubule Polymerization Regulates Hierarchical Protrusions That Govern Efficient Fibroblast-Collagen Interactions.

作者信息

Shakiba Delaram, Alisafaei Farid, Savadipour Alireza, Rowe Roger A, Liu Zhangao, Pryse Kenneth M, Shenoy Vivek B, Elson Elliot L, Genin Guy M

机构信息

NSF Science and Technology Center for Engineering Mechanobiology and Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130 United States.

NSF Science and Technology Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Nano. 2020 Jul 28;14(7):7868-7879. doi: 10.1021/acsnano.9b09941. Epub 2020 Apr 20.

Abstract

Fibroblasts undergo a critical transformation from an initially inactive state to a morphologically different and contractile state after several hours of being embedded within a physiologically relevant three-dimensional (3D) fibrous collagen-based extracellular matrix (ECM). However, little is known about the critical mechanisms by which fibroblasts adapt themselves and their microenvironment in the earliest stage of cell-matrix interaction. Here, we identified the mechanisms by which fibroblasts interact with their 3D collagen fibrous matrices in the early stages of cell-matrix interaction and showed that fibroblasts use energetically efficient hierarchical micro/nano-scaled protrusions in these stages as the primary means for the transformation and adaptation. We found that actomyosin contractility in these protrusions in the early stages of cell-matrix interaction restricts the growth of microtubules by applying compressive forces on them. Our results show that actomyosin contractility and microtubules work in concert in the early stages of cell-matrix interaction to adapt fibroblasts and their microenvironment to one another. These early stage interactions result in responses to disruption of the microtubule network and/or actomyosin contractility that are opposite to well-known responses to late-stage disruption and reveal insight into the ways that cells adapt themselves and their ECM recursively.

摘要

成纤维细胞在嵌入生理相关的三维(3D)纤维状胶原细胞外基质(ECM)数小时后,会经历从最初的非活性状态到形态不同的收缩状态的关键转变。然而,对于成纤维细胞在细胞-基质相互作用的最早阶段适应自身及其微环境的关键机制,人们了解甚少。在此,我们确定了成纤维细胞在细胞-基质相互作用早期与3D胶原纤维基质相互作用的机制,并表明成纤维细胞在这些阶段利用能量高效的分级微/纳米尺度突起作为转变和适应的主要手段。我们发现,在细胞-基质相互作用早期,这些突起中的肌动球蛋白收缩性通过对微管施加压缩力来限制微管的生长。我们的结果表明,肌动球蛋白收缩性和微管在细胞-基质相互作用的早期协同作用,以使成纤维细胞及其微环境相互适应。这些早期相互作用导致对微管网络和/或肌动球蛋白收缩性破坏的反应,与对后期破坏的著名反应相反,并揭示了细胞递归地适应自身及其ECM的方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验