Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA.
Micro/Nano Technology Center, University of Louisville, Louisville, KY, USA.
Matrix Biol. 2024 Nov;133:14-32. doi: 10.1016/j.matbio.2024.08.001. Epub 2024 Aug 2.
Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI).
METHODS/RESULTS: Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions.
These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.
细胞通讯网络家族(CCN)的基质细胞蛋白成员,如 CCN1,长期以来一直被认为在调节伤口愈合、组织纤维化和胶原动力学等细胞过程中发挥作用。虽然许多研究表明 CCN1 通过促进成肌纤维细胞衰老在成年心脏中具有抗纤维化作用,但它们主要依赖于心脏损伤的体内模型中的外源补充策略,而在这些模型中 CCN1 的表达已经被诱导,这可能会混淆其在该过程中的功能的解释。本研究的目的是探讨内源性蛋白对成纤维细胞功能、胶原结构动力学的作用,及其对心肌梗死后心肌纤维化的影响。
方法/结果:在这里,我们采用 CCN1 功能丧失的方法,包括体外 siRNA 介导的耗竭和体内成纤维细胞特异性敲除小鼠,以评估内源性蛋白对心脏成纤维细胞纤维化信号的作用,以及其在心肌梗死后急性瘢痕形成中的作用。体外 CCN1 耗竭减少了心脏成纤维细胞衰老和增殖。尽管 CCN1 的耗竭降低了胶原加工和稳定酶(即 P4HA1、PLOD1 和 PLOD2)的表达,但它并没有抑制成肌纤维细胞的诱导或 I 型胶原的合成。单独地,成纤维细胞特异性去除 CCN1 不会对心室功能或心肌胶原含量产生负面影响,但会导致胶原纤维的紊乱和基质顺应性增加。同样,心肌梗死后 Ccn1 敲除动物在永久性冠状动脉结扎后一周内没有表现出明显的心脏结构或功能改变,但死亡率和心脏破裂的发生率显著增加。与我们的发现一致,即 CCN1 耗竭不会减轻体外成肌纤维细胞的转化或 I 型胶原的合成,Ccn1 敲除动物的胶原瘢痕宽度或质量与对照组相比没有可测量的差异;然而,通过 SHG 和 TEM 对瘢痕区域进行的详细结构分析显示,其瘢痕胶原的拓扑结构发生了明显改变,表现为许多宏观和微观水平胶原结构属性的改变。具体而言,Ccn1 敲除小鼠在心肌梗死后的瘢痕区域表现出更高的 ECM 结构复杂性,包括胶原纤维局部排列的降低和扭曲程度的增加,以及组织内聚性、包装和胶原纤维大小的降低。与 ECM 拓扑结构的这些变化与 CCN1 的缺失相关的是成纤维细胞-基质相互作用的减少,这可以通过体内成纤维细胞核和细胞变形的减少以及体外焦点粘连形成的减少来证明;这些发现表明 CCN1 影响成纤维细胞引导的胶原排列的能力可能部分归因于其增强成纤维细胞-基质相互作用的能力。
这些发现强调了内源性 CCN1 在心肌梗死后发生的瘢痕形成过程中的关键作用,指导细胞外基质胶原成分的适当排列,形成成熟瘢痕,塑造支持其结构稳定性的机械特性。虽然这表明 CCN1 在调节对心肌梗死后瘢痕完整性至关重要的胶原结构属性方面具有适应性作用,但 CCN1 的长期持续表达具有适应性不良的影响,可能降低非梗死区域的胶原结构复杂性和顺应性。