Suppr超能文献

个人碳纳米管气溶胶暴露评估用热光碳分析仪的实验室评估。

Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures.

机构信息

Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa.

出版信息

J Occup Environ Hyg. 2020 Jun;17(6):262-273. doi: 10.1080/15459624.2020.1740237. Epub 2020 Apr 14.

Abstract

Aethalometers are direct-reading instruments primarily used for measuring black carbon (BC) concentrations in workplace and ambient atmospheres. Aethalometer BC measurements of carbon nanotubes (CNTs) were compared to measurements made by other methods when subjected to high (>30 µg/m) and low (1-30 µg/m) CNT aerosol concentrations representing worst-case and typical workplace concentrations, respectively. A laboratory-based system was developed to generate carbon black, as an example of a nearly pure carbon, micron-sized aerosol, and two forms of multi-walled carbon nanotubes (CNTs): small-diameter (<8 nm) and large-diameter (50-80 nm). High-concentration trials were conducted during which a scanning mobility particle sizer (SMPS) was used to track particle count concentrations over time. Relative to the behavior of the SMPS counts over time, aethalometer readings exhibited a downward drift, which is indicative of aethalometer response subjected to high BC loading on the receiving filter of the instrument. A post-sample mathematical method was applied that adequately corrected for the drift. Low-concentration trials, during which concentration drift did not occur, were conducted to test aethalometer accuracy. The average BC concentration during a trial was compared to elemental carbon (EC) concentration sampled with a quartz-fiber filter and quantified by NIOSH Method 5040. The CB and large-diameter CNT concentrations measured with the aethalometer produced slopes when regressed on EC that were not significantly different from unity, whereas the small-diameter CNTs were under-sampled by the aethalometer relative to EC. These results indicate that aethalometer response may drift when evaluating CNT exposure scenarios, such as cleaning and powder handling, that produce concentrations >30 µg/m. However, aethalometer accuracy remains consistent over time when sampling general work zones in which CNT concentrations are expected to be <30 µg/m. A calibration check of aethalometer response relative to EC measured with Method 5040 is recommended to ensure that the aethalometer readings are not under sampling CNT concentrations as occurred with one of the CNTs evaluated in this study.

摘要

黑碳吸光光度计是一种直接读数仪器,主要用于测量工作场所和环境大气中的黑碳(BC)浓度。当碳纳米管(CNT)气溶胶浓度分别处于高浓度(>30μg/m)和低浓度(1-30μg/m)时,即分别代表最坏情况和典型工作场所浓度时,将黑碳吸光光度计 BC 测量值与其他方法的测量值进行了比较。建立了一个基于实验室的系统来生成碳黑,作为一种几乎纯碳的微尺度气溶胶的示例,以及两种形式的多壁碳纳米管(CNT):小直径(<8nm)和大直径(50-80nm)。进行了高浓度试验,在此期间,使用扫描迁移率颗粒粒径仪(SMPS)随时间跟踪颗粒计数浓度。相对于 SMPS 计数随时间的变化,吸光光度计读数表现出向下漂移,这表明仪器接收滤光片上受到高 BC 负载时吸光光度计的响应。应用了一种事后的数学方法,该方法对漂移进行了充分校正。在未发生浓度漂移的低浓度试验中,对吸光光度计的准确性进行了测试。将试验期间的平均 BC 浓度与用石英纤维过滤器采样的元素碳(EC)浓度进行了比较,并通过 NIOSH 方法 5040 进行了量化。用吸光光度计测量的 CB 和大直径 CNT 浓度与 EC 回归时产生的斜率与 1 没有显著差异,而小直径 CNT 相对于 EC 被吸光光度计欠采样。这些结果表明,在评估 CNT 暴露情况(例如清洁和粉末处理)时,吸光光度计的响应可能会发生漂移,这些情况会产生>30μg/m 的浓度。然而,当在预计 CNT 浓度<30μg/m 的一般工作区域进行采样时,吸光光度计的准确性随时间保持一致。建议对吸光光度计相对于使用方法 5040 测量的 EC 的响应进行校准检查,以确保吸光光度计读数不会对 CNT 浓度进行欠采样,就像本研究中评估的一种 CNT 一样。

相似文献

1
Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures.
J Occup Environ Hyg. 2020 Jun;17(6):262-273. doi: 10.1080/15459624.2020.1740237. Epub 2020 Apr 14.
4
Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer.
Ann Occup Hyg. 2016 Jul;60(6):717-30. doi: 10.1093/annhyg/mew025. Epub 2016 May 13.
6
Exposure Assessment in a Single-Walled Carbon Nanotube Primary Manufacturer.
Ann Work Expo Health. 2017 Mar 1;61(2):260-266. doi: 10.1093/annweh/wxw017.
7
Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions.
J Occup Environ Hyg. 2015;12(9):577-87. doi: 10.1080/15459624.2015.1022652.
8
Loading effect correction for real-time aethalometer measurements of fresh diesel soot.
J Air Waste Manag Assoc. 2007 Jul;57(7):868-73. doi: 10.3155/1047-3289.57.7.868.
10
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
Ann Occup Hyg. 2015 Jul;59(6):705-23. doi: 10.1093/annhyg/mev020. Epub 2015 Apr 7.

本文引用的文献

1
A task-based analysis of black carbon exposure in Iowa farmers during harvest.
J Occup Environ Hyg. 2018 Apr;15(4):293-304. doi: 10.1080/15459624.2017.1422870.
2
Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes.
Nanomaterials (Basel). 2014 Jun 12;4(2):439-453. doi: 10.3390/nano4020439.
3
An accurate filter loading correction is essential for assessing personal exposure to black carbon using an Aethalometer.
J Expo Sci Environ Epidemiol. 2017 Jul;27(4):409-416. doi: 10.1038/jes.2016.71. Epub 2016 Dec 21.
4
Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer.
Ann Occup Hyg. 2016 Jul;60(6):717-30. doi: 10.1093/annhyg/mew025. Epub 2016 May 13.
5
Performing T-tests to Compare Autocorrelated Time Series Data Collected from Direct-Reading Instruments.
J Occup Environ Hyg. 2015;12(11):743-52. doi: 10.1080/15459624.2015.1044603.
6
Risk Assessment of the Carbon Nanotube Group.
Risk Anal. 2015 Oct;35(10):1940-56. doi: 10.1111/risa.12394. Epub 2015 May 5.
7
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.
Ann Occup Hyg. 2015 Jul;59(6):705-23. doi: 10.1093/annhyg/mev020. Epub 2015 Apr 7.
8
Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.
Environ Sci Technol. 2014 Dec 16;48(24):14738-45. doi: 10.1021/es504295h. Epub 2014 Nov 26.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验