From the Department of Anesthesia, University of Utah, Salt Lake City, Utah.
Department of Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah.
Anesth Analg. 2020 May;130(5):1147-1156. doi: 10.1213/ANE.0000000000004498.
Opioid-induced respiratory depression (OIRD) is traditionally recognized by assessment of respiratory rate, arterial oxygen saturation, end-tidal CO2, and mental status. Although an irregular or ataxic breathing pattern is widely recognized as a manifestation of opioid effects, there is no standardized method for assessing ataxic breathing severity. The purpose of this study was to explore using a machine-learning algorithm for quantifying the severity of opioid-induced ataxic breathing. We hypothesized that domain experts would have high interrater agreement with each other and that a machine-learning algorithm would have high interrater agreement with the domain experts for ataxic breathing severity assessment.
We administered target-controlled infusions of propofol and remifentanil to 26 healthy volunteers to simulate light sleep and OIRD. Respiration data were collected from respiratory inductance plethysmography (RIP) bands and an intranasal pressure transducer. Three domain experts quantified the severity of ataxic breathing in accordance with a visual scoring template. The Krippendorff alpha, which reports the extent of interrater agreement among N raters, was used to assess agreement among the 3 domain experts. A multiclass support vector machine (SVM) was trained on a subset of the domain expert-labeled data and then used to quantify ataxic breathing severity on the remaining data. The Vanbelle kappa was used to assess the interrater agreement of the machine-learning algorithm with the grouped domain experts. The Vanbelle kappa expands on the Krippendorff alpha by isolating a single rater-in this case, the machine-learning algorithm-and comparing it to a group of raters. Acceptance criteria for both statistical measures were set at >0.8. The SVM was trained and tested using 2 sensor inputs for the breath marks: RIP and intranasal pressure.
Krippendorff alpha was 0.93 (95% confidence interval [CI], 0.91-0.95) for the 3 domain experts. Vanbelle kappa was 0.98 (95% CI, 0.96-0.99) for the RIP SVM and 0.96 (0.92-0.98) for the intranasal pressure SVM compared to the domain experts.
We concluded it may be feasible for a machine-learning algorithm to quantify ataxic breathing severity in a manner consistent with a panel of domain experts. This methodology may be helpful in conjunction with traditional measures to identify patients experiencing OIRD.
阿片类药物引起的呼吸抑制(OIRD)传统上通过评估呼吸频率、动脉血氧饱和度、呼气末二氧化碳分压和精神状态来识别。尽管不规则或共济失调性呼吸模式被广泛认为是阿片类药物作用的表现,但目前还没有评估共济失调性呼吸严重程度的标准化方法。本研究旨在探讨使用机器学习算法来量化阿片类药物引起的共济失调性呼吸的严重程度。我们假设,领域专家之间的评分具有高度的一致性,并且机器学习算法与领域专家对共济失调性呼吸严重程度的评估具有高度的一致性。
我们对 26 名健康志愿者进行异丙酚和瑞芬太尼的靶控输注,以模拟浅睡眠和 OIRD。呼吸数据由呼吸感应式体描仪(RIP)带和鼻内压力传感器收集。三位领域专家根据视觉评分模板对共济失调性呼吸的严重程度进行了量化。Krippendorff alpha 用于评估 3 位领域专家之间的评分一致性程度,该指标报告了 N 位评分者之间的评分者间一致性程度。使用一组领域专家标记的数据对多类支持向量机(SVM)进行训练,然后使用剩余数据对共济失调性呼吸的严重程度进行量化。Vanbelle kappa 用于评估机器学习算法与分组领域专家之间的评分者间一致性。Vanbelle kappa 通过隔离单个评分者(在本例中为机器学习算法)并将其与一组评分者进行比较,扩展了 Krippendorff alpha。这两个统计指标的接受标准均设定为>0.8。SVM 使用呼吸标记的两个传感器输入(RIP 和鼻内压力)进行训练和测试。
3 位领域专家的 Krippendorff alpha 为 0.93(95%置信区间[CI],0.91-0.95)。与领域专家相比,RIP SVM 的 Vanbelle kappa 为 0.98(95%CI,0.96-0.99),鼻内压力 SVM 的 Vanbelle kappa 为 0.96(0.92-0.98)。
我们得出结论,机器学习算法以与一组领域专家一致的方式量化共济失调性呼吸的严重程度可能是可行的。这种方法可能有助于结合传统措施来识别发生 OIRD 的患者。