Spiechowicz J, Łuczka J
Institute of Physics, University of Silesia, 41-500 Chorzów, Poland.
Phys Rev E. 2020 Mar;101(3-1):032123. doi: 10.1103/PhysRevE.101.032123.
The celebrated Sutherland-Einstein relation for systems at thermal equilibrium states that spread of trajectories of Brownian particles is an increasing function of temperature. Here, we scrutinize the diffusion of underdamped Brownian motion in a biased periodic potential and analyze regimes in which a diffusion coefficient decreases with increasing temperature within a finite temperature window. Comprehensive numerical simulations of the corresponding Langevin equation performed with unprecedented resolution allow us to construct a phase diagram for the occurrence of the nonmonotonic temperature dependence of the diffusion coefficient. We discuss the relation of the later effect with the phenomenon of giant diffusion.
著名的关于热平衡系统的萨瑟兰 - 爱因斯坦关系表明,布朗粒子轨迹的扩散是温度的增函数。在此,我们仔细研究在有偏周期势中欠阻尼布朗运动的扩散,并分析在有限温度窗口内扩散系数随温度升高而降低的情况。以空前分辨率对相应的朗之万方程进行的全面数值模拟,使我们能够构建扩散系数非单调温度依赖性出现的相图。我们讨论了后一种效应与巨扩散现象的关系。