Suppr超能文献

Asymptotic behavior of the length of the longest increasing subsequences of random walks.

作者信息

Mendonça J Ricardo G, Schawe Hendrik, Hartmann Alexander K

机构信息

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000 São Paulo, Brazil.

LPTMS, CNRS UMR 8626, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay CEDEX, France.

出版信息

Phys Rev E. 2020 Mar;101(3-1):032102. doi: 10.1103/PhysRevE.101.032102.

Abstract

We numerically estimate the leading asymptotic behavior of the length L_{n} of the longest increasing subsequence of random walks with step increments following Student's t-distribution with parameters in the range 1/2≤ν≤5. We find that the expected value E(L_{n})∼n^{θ}lnn, with θ decreasing from θ(ν=1/2)≈0.70 to θ(ν≥5/2)≈0.50. For random walks with a distribution of step increments of finite variance (ν>2), this confirms previous observation of E(L_{n})∼sqrt[n]lnn to leading order. We note that this asymptotic behavior (including the subleading term) resembles that of the largest part of random integer partitions under the uniform measure and that, curiously, both random variables seem to follow Gumbel statistics. We also provide more refined estimates for the asymptotic behavior of E(L_{n}) for random walks with step increments of finite variance.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验