Suppr超能文献

低密度聚乙烯的热解:基于热重分析数据的动力学研究及人工神经网络预测

Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction.

作者信息

Dubdub Ibrahim, Al-Yaari Mohammed

机构信息

Department of Chemical Engineering, King Faisal University, Al-Ahsa 31982, P.O. Box 380, Saudi Arabia.

出版信息

Polymers (Basel). 2020 Apr 12;12(4):891. doi: 10.3390/polym12040891.

Abstract

Pyrolysis of waste low-density polyethylene (LDPE) is considered to be a highly efficient, promising treatment method. This work aims to investigate the kinetics of LDPE pyrolysis using three model-free methods (Friedman, Flynn-Wall-Qzawa (FWO), and Kissinger-Akahira-Sunose (KAS)), two model-fitting methods (Arrhenius and Coats-Redfern), as well as to develop, for the first time, a highly efficient artificial neural network (ANN) model to predict the kinetic parameters of LDPE pyrolysis. Thermogravimetric (TG) and derivative thermogravimetric (DTG) thermograms at 5, 10, 20 and 40 K min showed only a single pyrolysis zone, implying a single reaction. The values of the kinetic parameters ( and ) of LDPE pyrolysis have been calculated at different conversions by three model-free methods and the average values of the obtained activation energies are in good agreement and ranging between 193 and 195 kJ mol. In addition, these kinetic parameters at different heating rates have been calculated using Arrhenius and Coats-Redfern methods. Moreover, a feed-forward ANN with backpropagation model, with 10 neurons in two hidden layers and logsig-logsig transfer functions, has been employed to predict the thermogravimetric analysis (TGA) kinetic data. Results showed good agreement between the ANN-predicted and experimental data (R > 0.9999). Then, the selected network topology was tested for extra new input data with a highly efficient performance.

摘要

废低密度聚乙烯(LDPE)的热解被认为是一种高效、有前景的处理方法。本工作旨在使用三种无模型方法(弗里德曼法、弗林-沃尔-小泽法(FWO)和基辛格-赤平-ose法(KAS))、两种模型拟合方法(阿累尼乌斯法和科茨-雷德费恩法)研究LDPE热解动力学,并首次开发一种高效的人工神经网络(ANN)模型来预测LDPE热解的动力学参数。在5、10、20和40K/min下的热重(TG)和微商热重(DTG)热谱图仅显示一个热解区,这意味着只有一个反应。通过三种无模型方法计算了不同转化率下LDPE热解的动力学参数(和),得到的活化能平均值吻合良好,范围在193至195kJ/mol之间。此外,还使用阿累尼乌斯法和科茨-雷德费恩法计算了不同加热速率下的这些动力学参数。此外,采用了具有反向传播模型的前馈人工神经网络,该网络在两个隐藏层中有10个神经元以及对数-西格玛-对数-西格玛传递函数,来预测热重分析(TGA)动力学数据。结果表明人工神经网络预测数据与实验数据吻合良好(R>0.9999)。然后,对选定的网络拓扑结构进行了测试,结果表明其对额外的新输入数据具有高效的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69e2/7240361/b053d2c7f6dd/polymers-12-00891-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验