Altriki Ahmed, Ali Imtiaz, Razzak Shaikh Abdur, Ahmad Irshad, Farooq Wasif
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia.
Front Bioeng Biotechnol. 2022 Aug 18;10:925391. doi: 10.3389/fbioe.2022.925391. eCollection 2022.
This study investigates CO biofixation and pyrolytic kinetics of microalga using model-fitting and model-free methods. Microalga was grown in two different media. The highest rate of CO fixation (0.130 g/L/day) was observed at a CO concentration of 2%. The pyrokinetics of the biomass was performed by a thermogravimetric analyzer (TGA). Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves at 5, 10 and 20°C/min indicated the presence of multiple peaks in the active pyrolysis zones. The activation energy was calculated by different model-free methods such as Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Popescu. The obtained activation energy which are 61.7-287 kJ/mol using Friedman, 40.6-262 kJ/mol using FWO, 35-262 kJ/mol using KAS, and 66.4-255 kJ/mol using Popescu showed good agreement with the experimental values with higher than 0.96 determination coefficient (R). Moreover, it was found that the most probable reaction mechanism for pyrolysis was a third-order function. Furthermore, the multilayer perceptron-based artificial neural network (MLP-ANN) regression model of the 4-10-1 architecture demonstrated excellent agreement with the experimental values of the thermal decomposition of the Therefore, the study suggests that the MLP-ANN regression model could be utilized to predict thermogravimetric parameters.
本研究采用模型拟合和无模型方法研究微藻的一氧化碳生物固定和热解动力学。微藻在两种不同的培养基中生长。在一氧化碳浓度为2%时,观察到最高的一氧化碳固定速率(0.130克/升/天)。通过热重分析仪(TGA)对生物质进行热解动力学研究。在5、10和20℃/分钟下的热重(TG)和微商热重(DTG)曲线表明,在活性热解区存在多个峰。通过不同的无模型方法计算活化能,如弗里德曼法、弗林-沃尔-小泽(FWO)法、基辛格-赤平-须野(KAS)法和波佩斯库法。使用弗里德曼法得到的活化能为61.7 - 287千焦/摩尔,使用FWO法为40.6 - 262千焦/摩尔,使用KAS法为35 - 262千焦/摩尔,使用波佩斯库法为66.4 - 255千焦/摩尔,这些结果与实验值显示出良好的一致性,决定系数(R)高于0.96。此外,发现热解最可能的反应机理是三阶函数。此外,基于多层感知器的4 - 10 - 1结构人工神经网络(MLP - ANN)回归模型与热分解的实验值显示出极好的一致性。因此,该研究表明MLP - ANN回归模型可用于预测热重参数。