Suppr超能文献

太阳风的电子温度。

Electron temperature of the solar wind.

作者信息

Boldyrev Stanislav, Forest Cary, Egedal Jan

机构信息

Department of Physics, University of Wisconsin-Madison, Madison, WI 53706;

Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9232-9240. doi: 10.1073/pnas.1917905117. Epub 2020 Apr 14.

Abstract

Solar wind provides an example of a weakly collisional plasma expanding from a thermal source in the presence of spatially diverging magnetic-field lines. Observations show that in the inner heliosphere, the electron temperature declines with the distance approximately as [Formula: see text], which is significantly slower than the adiabatic expansion law [Formula: see text] Motivated by such observations, we propose a kinetic theory that addresses the nonadiabatic evolution of a nearly collisionless plasma expanding from a central thermal source. We concentrate on the dynamics of energetic electrons propagating along a radially diverging magnetic-flux tube. Due to conservation of their magnetic moments, the electrons form a beam collimated along the magnetic-field lines. Due to weak energy exchange with the background plasma, the beam population slowly loses its energy and heats the background plasma. We propose that no matter how weak the collisions are, at large enough distances from the source a universal regime of expansion is established where the electron temperature declines as [Formula: see text] This is close to the observed scaling of the electron temperature in the inner heliosphere. Our first-principle kinetic derivation may thus provide an explanation for the slower-than-adiabatic temperature decline in the solar wind. More broadly, it may be useful for describing magnetized collisionless winds from G-type stars.

摘要

太阳风提供了一个弱碰撞等离子体的例子,该等离子体在存在空间发散磁力线的情况下从热源膨胀。观测表明,在日球层内部,电子温度随距离的下降近似为[公式:见原文],这比绝热膨胀定律[公式:见原文]要慢得多。受此类观测结果的推动,我们提出了一种动力学理论,该理论解决了从中心热源膨胀的近无碰撞等离子体的非绝热演化问题。我们专注于沿径向发散磁通管传播的高能电子的动力学。由于它们磁矩的守恒,电子形成了沿磁力线准直的束流。由于与背景等离子体的能量交换较弱,束流群体缓慢失去其能量并加热背景等离子体。我们提出,无论碰撞多么微弱,在离源足够远的地方都会建立一种普遍的膨胀状态,其中电子温度按[公式:见原文]下降。这与日球层内部观测到的电子温度标度相近。因此,我们基于第一性原理的动力学推导可能为太阳风中比绝热温度下降更慢的现象提供一种解释。更广泛地说,它可能有助于描述来自G型恒星的磁化无碰撞风。

相似文献

1
Electron temperature of the solar wind.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9232-9240. doi: 10.1073/pnas.1917905117. Epub 2020 Apr 14.
2
Self-Similar Theory of Thermal Conduction and Application to the Solar Wind.
Phys Rev Lett. 2015 Jun 19;114(24):245003. doi: 10.1103/PhysRevLett.114.245003. Epub 2015 Jun 18.
3
Propagation and domains of the invariant ion-acoustic solitons in the plasmas.
Sci Rep. 2024 Feb 13;14(1):3586. doi: 10.1038/s41598-024-54263-x.
4
Thermal disequilibration of ions and electrons by collisionless plasma turbulence.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):771-776. doi: 10.1073/pnas.1812491116. Epub 2018 Dec 31.
5
In Situ Observations of Interstellar Pickup Ions from 1 au to the Outer Heliosphere.
Space Sci Rev. 2022;218(4):28. doi: 10.1007/s11214-022-00895-2. Epub 2022 May 9.
6
In situ observations of large-amplitude Alfvén waves heating and accelerating the solar wind.
Science. 2024 Aug 30;385(6712):962-966. doi: 10.1126/science.adk6953. Epub 2024 Aug 29.
7
The multi-scale nature of the solar wind.
Living Rev Sol Phys. 2019;16(1):5. doi: 10.1007/s41116-019-0021-0. Epub 2019 Dec 9.
9
Interchange reconnection as the source of the fast solar wind within coronal holes.
Nature. 2023 Jun;618(7964):252-256. doi: 10.1038/s41586-023-05955-3. Epub 2023 Jun 7.
10
Geometric considerations of the evolution of magnetic flux ropes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036405. doi: 10.1103/PhysRevE.67.036405. Epub 2003 Mar 19.

引用本文的文献

1
Electron scale coherent structure as micro accelerator in the Earth's magnetosheath.
Nat Commun. 2024 Jan 30;15(1):886. doi: 10.1038/s41467-024-45040-5.

本文引用的文献

1
Particle-in-cell Simulations of the Whistler Heat-flux Instability in Solar Wind Conditions.
Astrophys J Lett. 2019;882(1). doi: 10.3847/2041-8213/ab398b. Epub 2019 Sep 3.
2
The multi-scale nature of the solar wind.
Living Rev Sol Phys. 2019;16(1):5. doi: 10.1007/s41116-019-0021-0. Epub 2019 Dec 9.
4
Self-Similar Theory of Thermal Conduction and Application to the Solar Wind.
Phys Rev Lett. 2015 Jun 19;114(24):245003. doi: 10.1103/PhysRevLett.114.245003. Epub 2015 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验