Zhang Yanzeng, Li Jun, Tang Xian-Zhu
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
Sci Rep. 2024 Oct 8;14(1):23448. doi: 10.1038/s41598-024-73968-7.
Thermal quench of a nearly collisionless plasma against an isolated cooling boundary or region is an undesirable off-normal event in magnetic fusion experiments, but an ubiquitous process of cosmological importance in astrophysical plasmas. Parallel transport theory of ambipolar-constrained tail electron loss is known to predict rapid cooling of the parallel electron temperature [Formula: see text] although [Formula: see text] is difficult to diagnose in actual experiments. Instead direct experimental measurements can readily track the perpendicular electron temperature [Formula: see text] via electron cyclotron emission. The physics underlying the observed fast drop in [Formula: see text] requires a resolution. Here two collisionless mechanisms, dilutional cooling by infalling cold electrons and wave-particle interaction by two families of whistler instabilities, are shown to enable fast [Formula: see text] cooling that closely tracks the mostly collisionless crash of [Formula: see text] These findings motivate both experimental validation and reexamination of a broad class of plasma cooling problems in laboratory, space, and astrophysical settings.
在磁聚变实验中,近无碰撞等离子体与孤立冷却边界或区域的热猝灭是一种不良的异常事件,但在天体物理等离子体中却是一个具有宇宙学重要性的普遍过程。已知双极约束尾电子损失的平行输运理论可预测平行电子温度[公式:见正文]的快速冷却,尽管在实际实验中很难诊断[公式:见正文]。相反,直接实验测量可以通过电子回旋辐射轻松追踪垂直电子温度[公式:见正文]。观察到的[公式:见正文]快速下降背后的物理原理需要得到解决。这里展示了两种无碰撞机制,即下落冷电子的稀释冷却和两类哨声不稳定性的波粒相互作用,它们能够实现快速的[公式:见正文]冷却,紧密追踪[公式:见正文]的几乎无碰撞崩溃。这些发现促使人们对实验室、空间和天体物理环境中的一大类等离子体冷却问题进行实验验证和重新审视。