Suppr超能文献

自动化清洁和重建居民地址历史记录,以便在纵向研究中分配环境暴露情况。

Automation of cleaning and reconstructing residential address histories to assign environmental exposures in longitudinal studies.

机构信息

UK Small Area Health Statistics Unit, MRC-PHE Centre for Environment & Health, Imperial College London, London, UK.

Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK.

出版信息

Int J Epidemiol. 2020 Apr 1;49 Suppl 1(Suppl 1):i49-i56. doi: 10.1093/ije/dyz180.

Abstract

BACKGROUND

We have developed an open-source ALgorithm for Generating Address Exposures (ALGAE) that cleans residential address records to construct address histories and assign spatially-determined exposures to cohort participants. The first application of this algorithm was to construct prenatal and early life air pollution exposure for individuals of the Avon Longitudinal Study of Parents and Children (ALSPAC) in the South West of England, using previously estimated particulate matter ≤10  µm (PM10) concentrations.

METHODS

ALSPAC recruited 14 541 pregnant women between 1991 and 1992. We assigned trimester-specific estimated PM10 exposures for 12 752 pregnancies, and first year of life exposures for 12 525 births, based on maternal residence and residential mobility.

RESULTS

Average PM10 exposure was 32.6  µg/m3 [standard deviation (S.D.) 3.0  µg/m3] during pregnancy and 31.4 µg/m3 (S.D. 2.6  µg/m3) during the first year of life; 6.7% of women changed address during pregnancy, and 18.0% moved during first year of life of their infant. Exposure differences ranged from -5.3  µg/m3 to 12.4  µg/m3 (up to 26% difference) during pregnancy and -7.22  µg/m3 to 7.64  µg/m3 (up to 27% difference) in the first year of life, when comparing estimated exposure using the address at birth and that assessed using the complete cleaned address history. For the majority of individuals exposure changed by <5%, but some relatively large changes were seen both in pregnancy and in infancy.

CONCLUSIONS

ALGAE provides a generic and adaptable, open-source solution to clean addresses stored in a cohort contact database and assign life stage-specific exposure estimates with the potential to reduce exposure misclassification.

摘要

背景

我们开发了一种开源算法,用于生成地址暴露(ALGAE),该算法可清理居住地址记录,构建地址历史记录,并为队列参与者分配空间确定的暴露。该算法的首次应用是使用先前估计的≤10 µm 颗粒物(PM10)浓度,为英格兰西南部的阿冯纵向研究父母和孩子(ALSPAC)中的个体构建产前和早期生活空气污染暴露。

方法

ALSPAC 在 1991 年至 1992 年间招募了 14541 名孕妇。我们根据母亲的居住地和居住地的流动性,为 12752 次妊娠分配了特定于妊娠的估计 PM10 暴露,为 12525 次分娩分配了第一年的生活暴露。

结果

怀孕期间的平均 PM10 暴露为 32.6 µg/m3[标准差(S.D.)3.0 µg/m3],婴儿第一年的平均 PM10 暴露为 31.4 µg/m3(S.D. 2.6 µg/m3);怀孕期间有 6.7%的妇女改变了地址,婴儿出生后的第一年中有 18.0%的人搬家了。在怀孕期间,暴露差异范围为-5.3 µg/m3 至 12.4 µg/m3(最大差异为 26%),在婴儿出生后的第一年中,暴露差异范围为-7.22 µg/m3 至 7.64 µg/m3(最大差异为 27%),比较使用出生时的地址和使用完整清洁地址历史记录评估的暴露。对于大多数人来说,暴露变化小于 5%,但在怀孕期间和婴儿期都看到了一些相对较大的变化。

结论

ALGAE 为清理队列联系数据库中存储的地址并分配特定于生命阶段的暴露估计值提供了一种通用且适应性强的开源解决方案,有可能减少暴露分类错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验