Research System and Science Dynamics research area, Deutsche Zentrum für Hochschul- und Wissenschaftsforschung (DZHW), Berlin, Germany.
Department of Geography, Indiana University, Bloomington, Indiana, United States of America.
PLoS One. 2020 Apr 15;15(4):e0227593. doi: 10.1371/journal.pone.0227593. eCollection 2020.
Genomic editing technologies are developing rapidly, promising significant developments for biomedicine, agriculture and other fields. In the present investigation, we analyzed and compared the process of innovation for six genomic technologies: viral vectors, RNAi, TALENs, meganucleases, ZFNs and CRISPR/Cas including the profile of the main research institutions and their funders, to understand how innovation evolved and what institutions influenced research trajectories. A Web of Science search of papers on viral vectors RNAi, CRISPR/Cas, TALENs, ZFNs and meganucleases was used to build a citation network of 16,746 papers. An analysis of network clustering combined with text mining was performed. For viral vectors, a long-term process of incremental innovation was identified, which was largely publicly funded in the United States and the European Union. The trajectory of RNAi research included clusters related to the study of RNAi as a biological phenomenon and its use in functional genomics, biomedicine and pest control. A British philanthropic organization and a US pharmaceutical company played a key role in the development of basic RNAi research and clinical application respectively, in addition to government and academic institutions. In the case of CRISPR/Cas research, basic science discoveries led to the technical improvements, and these two in turn provided the information required for the development of biomedical, agricultural, livestock and industrial applications. The trajectory of CRISPR/Cas research exhibits a geopolitical division of the investigation efforts between the US, as the main producer and funder of basic research and technical improvements, and Chinese research institutions increasingly leading applied research. Our results reflect a change in the model for financing science, with reduced public financing for basic science and applied research on publicly funded technological developments in the US, and the emergence of China as a scientific superpower, with implications for the development of applications of genomic technologies.
基因组编辑技术发展迅速,有望为生物医药、农业和其他领域带来重大发展。在本研究中,我们分析和比较了六种基因组技术的创新过程:病毒载体、RNAi、TALENs、Meganucleases、ZFNs 和 CRISPR/Cas,包括主要研究机构及其资助者的概况,以了解创新是如何演变的,以及哪些机构影响了研究轨迹。我们使用 Web of Science 搜索了关于病毒载体 RNAi、CRISPR/Cas、TALENs、ZFNs 和 Meganucleases 的论文,构建了一个包含 16746 篇论文的引文网络。我们对网络聚类结合文本挖掘进行了分析。对于病毒载体,我们确定了一个长期的渐进式创新过程,该过程在美国和欧盟主要由公共资金资助。RNAi 研究的轨迹包括与 RNAi 作为生物现象的研究及其在功能基因组学、生物医学和害虫防治中的应用相关的集群。一个英国慈善组织和一家美国制药公司在基础 RNAi 研究和临床应用的发展中分别发挥了关键作用,此外还有政府和学术机构。在 CRISPR/Cas 研究方面,基础科学发现导致了技术改进,而这两者反过来又为生物医学、农业、畜牧业和工业应用的发展提供了所需的信息。CRISPR/Cas 研究的轨迹表现出了一种地缘政治上的分工,美国是基础研究和技术改进的主要生产者和资助者,而中国的研究机构则越来越主导着应用研究。我们的研究结果反映了科学融资模式的变化,美国对基础科学和公共资助的技术开发的应用研究的公共融资减少,中国作为一个科学超级大国的出现,这对基因组技术应用的发展有影响。