Suppr超能文献

动态轨迹:皮质-皮质诱发电位与弥散成像的整合。

Dynamic tractography: Integrating cortico-cortical evoked potentials and diffusion imaging.

机构信息

Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.

Translational Neuroscience Program, Wayne State University, Detroit, MI, USA; Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Dept. of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA.

出版信息

Neuroimage. 2020 Jul 15;215:116763. doi: 10.1016/j.neuroimage.2020.116763. Epub 2020 Apr 12.

Abstract

INTRODUCTION

Cortico-cortical evoked potentials (CCEPs) are utilized to identify effective networks in the human brain. Following single-pulse electrical stimulation of cortical electrodes, evoked responses are recorded from distant cortical areas. A negative deflection (N1) which occurs 10-50 ​ms post-stimulus is considered to be a marker for direct cortico-cortical connectivity. However, with CCEPs alone it is not possible to observe the white matter pathways that conduct the signal or accurately predict N1 amplitude and latency at downstream recoding sites. Here, we develop a new approach, termed "dynamic tractography," which integrates CCEP data with diffusion-weighted imaging (DWI) data collected from the same patients. This innovative method allows greater insights into cortico-cortical networks than provided by each method alone and may improve the understanding of large-scale networks that support cognitive functions. The dynamic tractography model produces several fundamental hypotheses which we investigate: 1) DWI-based pathlength predicts N1 latency; 2) DWI-based pathlength negatively predicts N1 voltage; and 3) fractional anisotropy (FA) along the white matter path predicts N1 propagation velocity.

METHODS

Twenty-three neurosurgical patients with drug-resistant epilepsy underwent both extraoperative CCEP recordings and preoperative DWI scans. Subdural grids of 3 ​mm diameter electrodes were used for stimulation and recording, with 98-128 eligible electrodes per patient. CCEPs were elicited by trains of 1 ​Hz stimuli with an intensity of 5 ​mA and recorded at a sample rate of 1 ​kHz. N1 peak and latency were defined as the maximum of a negative deflection within 10-50 ​ms post-stimulus with a z-score > 5 relative to baseline. Electrodes and DWI were coregistered to construct electrode connectomes for white matter quantification.

RESULTS

Clinical variables (age, sex, number of anti-epileptic drugs, handedness, and stimulated hemisphere) did not correlate with the key outcome measures (N1 peak amplitude, latency, velocity, or DWI pathlength). All subjects and electrodes were therefore pooled into a group-level analysis to determine overall patterns. As hypothesized, DWI path length positively predicted N1 latency (R ​= ​0.81, β ​= ​1.51, p ​= ​4.76e-16) and negatively predicted N1 voltage (R ​= ​0.79, β ​= ​-0.094, p ​= ​9.30e-15), while FA predicted N1 propagation velocity (R ​= ​0.35, β ​= ​48.0, p ​= ​0.001).

CONCLUSION

We have demonstrated that the strength and timing of the CCEP N1 is dependent on the properties of the underlying white matter network. Integrated CCEP and DWI visualization allows robust localization of intact axonal pathways which effectively interconnect eloquent cortex.

摘要

简介

皮质-皮质诱发电位(CCEPs)用于识别人脑内的有效网络。在皮质电极的单次脉冲电刺激后,从远距离皮质区记录诱发反应。刺激后 10-50 毫秒出现的负偏转(N1)被认为是直接皮质-皮质连接的标志物。然而,仅使用 CCEPs 无法观察到传导信号的白质通路,也无法准确预测下游记录部位的 N1 幅度和潜伏期。在这里,我们开发了一种新方法,称为“动态示踪”,它将 CCEP 数据与来自同一患者的扩散加权成像(DWI)数据相结合。这种创新方法提供了比每种方法单独提供的更深入的皮质-皮质网络见解,并可能改善对支持认知功能的大规模网络的理解。动态示踪模型产生了几个基本假设,我们对此进行了研究:1)基于 DWI 的路径长度预测 N1 潜伏期;2)基于 DWI 的路径长度负预测 N1 电压;3)沿白质路径的分数各向异性(FA)预测 N1 传播速度。

方法

23 名药物难治性癫痫患者接受了手术室外 CCEP 记录和术前 DWI 扫描。使用直径为 3 毫米的硬膜下网格电极进行刺激和记录,每个患者有 98-128 个合格电极。CCEPs 由 1 Hz 刺激的串诱发,强度为 5 mA,采样率为 1 kHz。N1 峰值和潜伏期定义为刺激后 10-50 毫秒内最大的负偏转,相对于基线的 z 分数> 5。将电极和 DWI 配准以构建用于白质量化的电极连接组。

结果

临床变量(年龄、性别、抗癫痫药物数量、利手和刺激半球)与关键结果测量(N1 峰值幅度、潜伏期、速度或 DWI 路径长度)无关。因此,将所有受试者和电极汇总到一个组水平分析中,以确定整体模式。正如假设的那样,DWI 路径长度与 N1 潜伏期呈正相关(R=0.81,β=1.51,p=4.76e-16),与 N1 电压呈负相关(R=0.79,β=-0.094,p=9.30e-15),而 FA 与 N1 传播速度相关(R=0.35,β=48.0,p=0.001)。

结论

我们已经证明,CCEP N1 的强度和时间取决于潜在白质网络的特性。集成的 CCEP 和 DWI 可视化允许对有效地连接大脑皮质的完整轴突通路进行稳健定位。

相似文献

2
Probabilistic functional tractography of the human cortex revisited.重新探讨人类大脑皮质的概率功能束追踪。
Neuroimage. 2018 Nov 1;181:414-429. doi: 10.1016/j.neuroimage.2018.07.039. Epub 2018 Jul 17.
7
Structural and effective connectivity in focal epilepsy.局灶性癫痫的结构和功能连接。
Neuroimage Clin. 2017 Dec 12;17:943-952. doi: 10.1016/j.nicl.2017.12.020. eCollection 2018.

引用本文的文献

本文引用的文献

3
A Comparison of Evoked and Non-evoked Functional Networks.诱发与非诱发功能网络的比较
Brain Topogr. 2019 May;32(3):405-417. doi: 10.1007/s10548-018-0692-1. Epub 2018 Dec 6.
5
A quantitative method for evaluating cortical responses to electrical stimulation.一种评估电刺激引起的皮层反应的定量方法。
J Neurosci Methods. 2019 Jan 1;311:67-75. doi: 10.1016/j.jneumeth.2018.09.034. Epub 2018 Oct 4.
7
Probabilistic functional tractography of the human cortex revisited.重新探讨人类大脑皮质的概率功能束追踪。
Neuroimage. 2018 Nov 1;181:414-429. doi: 10.1016/j.neuroimage.2018.07.039. Epub 2018 Jul 17.
9
Structural and effective connectivity in focal epilepsy.局灶性癫痫的结构和功能连接。
Neuroimage Clin. 2017 Dec 12;17:943-952. doi: 10.1016/j.nicl.2017.12.020. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验