Suppr超能文献

帕金森病左旋多巴诱导性异动症的诊断预测模型

Diagnostic prediction model for levodopa-induced dyskinesia in Parkinson's disease.

作者信息

Santos-Lobato Bruno Lopes, Schumacher-Schuh Artur F, Rieder Carlos R M, Hutz Mara H, Borges Vanderci, Ferraz Henrique Ballalai, Mata Ignacio F, Zabetian Cyrus P, Tumas Vitor

机构信息

Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências Comportamentais, Ribeirão Preto SP, Brazil.

Universidade de São Paulo, Núcleo de Apoio à Pesquisa em Neurociência Aplicada, São Paulo SP, Brazil.

出版信息

Arq Neuropsiquiatr. 2020 Apr;78(4):206-216. doi: 10.1590/0004-282X20190191.

Abstract

BACKGROUND

There are currently no methods to predict the development of levodopa-induced dyskinesia (LID), a frequent complication of Parkinson's disease (PD) treatment. Clinical predictors and single nucleotide polymorphisms (SNP) have been associated to LID in PD.

OBJECTIVE

To investigate the association of clinical and genetic variables with LID and to develop a diagnostic prediction model for LID in PD.

METHODS

We studied 430 PD patients using levodopa. The presence of LID was defined as an MDS-UPDRS Part IV score ≥1 on item 4.1. We tested the association between specific clinical variables and seven SNPs and the development of LID, using logistic regression models.

RESULTS

Regarding clinical variables, age of PD onset, disease duration, initial motor symptom and use of dopaminergic agonists were associated to LID. Only CC genotype of ADORA2A rs2298383 SNP was associated to LID after adjustment. We developed two diagnostic prediction models with reasonable accuracy, but we suggest that the clinical prediction model be used. This prediction model has an area under the curve of 0.817 (95% confidence interval [95%CI] 0.77‒0.85) and no significant lack of fit (Hosmer-Lemeshow goodness-of-fit test p=0.61).

CONCLUSION

Predicted probability of LID can be estimated with reasonable accuracy using a diagnostic clinical prediction model which combines age of PD onset, disease duration, initial motor symptom and use of dopaminergic agonists.

摘要

背景

目前尚无方法预测左旋多巴诱导的异动症(LID)的发生,LID是帕金森病(PD)治疗中常见的并发症。临床预测指标和单核苷酸多态性(SNP)已被证实与PD患者的LID有关。

目的

研究临床和基因变量与LID的相关性,并建立PD患者LID的诊断预测模型。

方法

我们对430例使用左旋多巴的PD患者进行了研究。LID的存在定义为MDS-UPDRS第四部分4.1项评分≥1分。我们使用逻辑回归模型测试了特定临床变量、7个SNP与LID发生之间的相关性。

结果

关于临床变量,PD发病年龄、病程、初始运动症状和多巴胺能激动剂的使用与LID有关。调整后,仅ADORA2A rs2298383 SNP的CC基因型与LID有关。我们建立了两个诊断预测模型,其准确性合理,但建议使用临床预测模型。该预测模型的曲线下面积为0.817(95%置信区间[95%CI]0.77‒0.85),且无显著的拟合不足(Hosmer-Lemeshow拟合优度检验p = 0.61)。

结论

使用结合PD发病年龄、病程、初始运动症状和多巴胺能激动剂使用情况的诊断临床预测模型,可以合理准确地估计LID的预测概率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验