Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.
Department of Drug Sciences, University of Catania, Catania, Italy.
Front Immunol. 2020 Mar 31;11:456. doi: 10.3389/fimmu.2020.00456. eCollection 2020.
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants-, and -potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal-spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker-drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
神经炎症始于阿尔茨海默病(AD)临床发病前数十年,是 AD 连续体中最早出现的病理生理改变之一。大规模全基因组关联研究指出了几个遗传变异体,这些变异体可能与神经炎症有关。这些基因大多参与促炎细胞内信号转导、细胞因子/白细胞介素/细胞更替、突触活性、脂质代谢和囊泡运输。蛋白质组学研究表明,TNF-α、TGF-β、IL-1β 和受体蛋白 TREM2 引发和持续的大量相互关联的异常分子途径参与了神经炎症。小胶质细胞和星形胶质细胞是神经炎症的关键细胞驱动因素和调节因子。在生理条件下,它们对神经传递和突触稳态很重要。在 AD 中,在其病理生理演变的整个过程中存在一个转折点,其中神经胶质细胞维持过度表达的炎症反应,与淀粉样蛋白-β和 tau 积累协同作用,以自我强化的方式驱动突触毒性和神经退行性变。尽管有很强的治疗原理,但以前的临床试验研究具有抗炎特性的化合物,包括非甾体抗炎药(NSAIDs),并未达到主要疗效终点。可以想象,研究设计问题,包括缺乏诊断准确性和生物标志物来确定目标人群并证明机制,可能部分解释了负面结果。然而,最近的一项荟萃分析表明 NSAIDs 具有潜在的生物学效应。在这方面,神经炎症的候选液体制剂生物标志物正在进行分析/临床验证,即 TREM2、IL-1β、MCP-1、IL-6、TNF-α 受体复合物、TGF-β 和 YKL-40。正在研究正电子发射断层扫描放射性配体以实现神经炎症的和纵向区域探索。生物标志物跟踪不同的分子途径(体液基质)以及大脑神经炎症内表型(神经影像学标志物),可以理清神经炎症与其他 AD 病理生理机制之间的时空动态。预计稳健的生物标志物-药物联合开发管道将丰富大型临床试验,测试新一代化合物直接或间接地作用于神经炎症靶点并显示出潜在的疾病修饰作用:新型 NSAIDs、AL002(抗 TREM2 抗体)、抗 Aβ 原纤维(BAN2401)和 AL003(抗 CD33 抗体)。下一步是利用突破和多模态技术,结合系统生物学方法,是在精准医学框架下开发针对神经炎症的个体化治疗策略的途径。