Sorbonne University, GRC n°21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, F-75013, Paris, France.
Sorbonne University, GRC n°21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital, F-75013, Paris, France.
Neuropharmacology. 2021 Mar 1;185:108081. doi: 10.1016/j.neuropharm.2020.108081. Epub 2020 May 11.
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
当阿尔茨海默病(AD)的疾病修饰疗法问世时,全球医疗保健系统将面临大规模的临床和生物筛查需求的挑战。需要推进具有全球可及性、微创性、省时和节省成本的基于血液的生物标志物的验证和资格认证。新的病理生理机制(和相关候选生物标志物)——包括神经炎症途径(TREM2 和 YKL-40)、轴突变性(神经丝轻链蛋白)、突触功能障碍(神经颗粒蛋白、突触结合蛋白、α-突触核蛋白和 SNAP-25)——可能被整合到一个不断扩大的病理生理和生物标志物矩阵中,并最终整合到一个全面的基于血液的液体活检中,与不断发展的 ATN+分类系统和精准医学范式保持一致。基于液体活检的诊断和治疗算法在肿瘤疾病修饰疗法和医疗实践中越来越多地被采用,在 AD 和其他脑部疾病中也显示出巨大的潜力。对于 AD 和其他神经退行性疾病,新发现的异常分子途径已被确定为合适的治疗靶点,目前正在由学术界/行业主导的研发计划进行研究,包括基底前脑胆碱能神经元中的神经生长因子途径、sigma1 受体和 Rho 家族的 GTPases。胆碱能化合物、重新定位计划的药物候选物和非药物多领域干预(营养、认知训练和体育活动)的认知功能和大脑健康跨度的临床长期效应的证据也在不断发展。最终,新的药理学范式,如基于定量系统药理学的综合/探索性方法,正在获得动力,以优化药物发现并实现基于精确医学的有效途径策略。本文是“神经退行性疾病疾病修饰疗法的探索”特刊的一部分。