AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.
AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France.
Pharmacol Res. 2018 Apr;130:331-365. doi: 10.1016/j.phrs.2018.02.014. Epub 2018 Feb 16.
The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD.
多基因阿尔茨海默病(AD)的复杂多因素性质给药物开发带来了重大挑战。AD 病理生理学在多个系统水平上以非线性动态方式发展——从分子到器官系统——并通过适应、代偿和失代偿到系统衰竭。适应和代偿维持着体内平衡:这是基因组、表观基因组和环境之间动态非线性相互作用产生的一种动态平衡。个体对压力源的易感性是基于个体触发因素、驱动因素和阈值的,这些因素决定了适应性和代偿性反应的启动和失败。因此,必须根据个体的生物学构成来研究 AD 病理生理学在空间和时间上的独特模式。这需要实施系统生物学和神经生理学,以促进精准医学(PM)和精准药理学(PP)。从基因表达到细胞周期再到组织修复和全系统网络激活等多个复杂水平的几个过程的调节,根据受影响的系统(空间尺度)具有不同的时间延迟(时间尺度)。最初的故障可能发生在任何一个潜在地影响整个动态相关系统的层次上。在组织内,从自组织系统层次的连续体到系统稳态到系统衰竭,揭示非线性病理生理机制的时空动态,是理解 AD 的关键。测量和可能控制 AD 期间发生的空间和时间尺度的适应性和代偿性反应将是实现实质性改变疾病进程和进展的最佳时间点的能力的关键步骤,从而对抗破坏关键病理生理输入。这种方法将为基于有效疾病修饰途径的靶向治疗提供概念基础。PP 基于探索性和综合性策略,针对包括 AD 在内的脑蛋白病等复杂疾病,旨在识别同时存在的异常分子途径,并预测它们对系统水平的时间影响。复杂疾病基于途径的分子特征的描述有助于在最早的代偿阶段对个体的不同亚群进行准确和机制性分层,此时治疗干预可能会逆转、停止或延迟疾病。此外,个体化药物选择可以通过降低副作用和不良反应的风险和幅度来优化治疗安全性。从方法论的角度来看,全面的“组学”生物标志物将指导沿着 AD 病理生理学的连续体探索时空系统范围的形态功能变化,从适应到不可逆转的失败。阿尔茨海默病精准医学倡议(APMI)和 APMI 队列计划(APMI-CP)已经启动,以促进向 AD 中有效的药物发现和开发的范式转变。