Suppr超能文献

PSBP-SVM:一种基于机器学习的用于预测聚苯乙烯结合肽的计算识别工具。

PSBP-SVM: A Machine Learning-Based Computational Identifier for Predicting Polystyrene Binding Peptides.

作者信息

Meng Chaolu, Hu Yang, Zhang Ying, Guo Fei

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China.

出版信息

Front Bioeng Biotechnol. 2020 Mar 31;8:245. doi: 10.3389/fbioe.2020.00245. eCollection 2020.

Abstract

Polystyrene binding peptides (PSBPs) play a key role in the immobilization process. The correct identification of PSBPs is the first step of all related works. In this paper, we proposed a novel support vector machine-based bioinformatic identification model. This model contains four machine learning steps, including feature extraction, feature selection, model training and optimization. In a five-fold cross validation test, this model achieves 90.38, 84.62, 87.50, and 0.90% SN, SP, ACC, and AUC, respectively. The performance of this model outperforms the state-of-the-art identifier in terms of the SN and ACC with a smaller feature set. Furthermore, we constructed a web server that includes the proposed model, which is freely accessible at http://server.malab.cn/PSBP-SVM/index.jsp.

摘要

聚苯乙烯结合肽(PSBPs)在固定化过程中起着关键作用。正确识别PSBPs是所有相关工作的第一步。在本文中,我们提出了一种基于支持向量机的新型生物信息学识别模型。该模型包含四个机器学习步骤,包括特征提取、特征选择、模型训练和优化。在五折交叉验证测试中,该模型的灵敏度(SN)、特异度(SP)、准确率(ACC)和曲线下面积(AUC)分别达到90.38%、84.62%、87.50%和0.90%。在特征集较小的情况下,该模型在SN和ACC方面的性能优于现有最先进的标识符。此外,我们构建了一个包含所提出模型的网络服务器,可通过http://server.malab.cn/PSBP-SVM/index.jsp免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe0/7137786/9e59ad6a0038/fbioe-08-00245-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验