Suppr超能文献

塑料结合肽的计算机辅助设计与分析

In Silico Design and Analysis of Plastic-Binding Peptides.

作者信息

Bergman Michael T, Xiao Xingqing, Hall Carol K

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.

Department of Chemistry, School of Science, Hainan University, Longhua District, Haikou, Hainan 571101, China.

出版信息

J Phys Chem B. 2023 Oct 5;127(39):8370-8381. doi: 10.1021/acs.jpcb.3c04319. Epub 2023 Sep 21.

Abstract

Peptides that bind to inorganic materials can be used to functionalize surfaces, control crystallization, or assist in interfacial self-assembly. In the past, inorganic-binding peptides have been found predominantly through peptide library screening. While this method has successfully identified peptides that bind to a variety of materials, an alternative design approach that can intelligently search for peptides and provide physical insight for peptide affinity would be desirable. In this work, we develop a computational, physics-based approach to design inorganic-binding peptides, focusing on peptides that bind to the common plastics polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate). The PepBD algorithm, a Monte Carlo method that samples peptide sequence and conformational space, was modified to include simulated annealing, relax hydration constraints, and an ensemble of conformations to initiate design. These modifications led to the discovery of peptides with significantly better scores compared to those obtained using the original PepBD. PepBD scores were found to improve with increasing van der Waals interactions, although strengthening the intermolecular van der Waals interactions comes at the cost of introducing unfavorable electrostatic interactions. The best designs are enriched in amino acids with bulky side chains and possess hydrophobic and hydrophilic patches whose location depends on the adsorbed conformation. Future work will evaluate the top peptide designs in molecular dynamics simulations and experiment, enabling their application in microplastic pollution remediation and plastic-based biosensors.

摘要

与无机材料结合的肽可用于使表面功能化、控制结晶或协助界面自组装。过去,无机结合肽主要是通过肽库筛选发现的。虽然这种方法已成功鉴定出与多种材料结合的肽,但一种能够智能搜索肽并为肽亲和力提供物理见解的替代设计方法将是理想的。在这项工作中,我们开发了一种基于计算物理的方法来设计无机结合肽,重点关注与常见塑料聚乙烯、聚丙烯、聚苯乙烯和聚对苯二甲酸乙二酯结合的肽。PepBD算法是一种对肽序列和构象空间进行采样的蒙特卡罗方法,经过修改后纳入了模拟退火、放宽水化约束以及用于启动设计的构象集合。这些修改导致发现了与使用原始PepBD获得的肽相比得分显著更高的肽。发现PepBD得分会随着范德华相互作用的增加而提高,尽管增强分子间范德华相互作用是以引入不利的静电相互作用为代价的。最佳设计富含具有大侧链的氨基酸,并具有疏水和亲水斑块,其位置取决于吸附构象。未来的工作将在分子动力学模拟和实验中评估顶级肽设计,使其能够应用于微塑料污染修复和基于塑料的生物传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224f/10591858/ab4612118a72/nihms-1934505-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验