Suppr超能文献

比较替代群体建模方法在实施 A 级 IVIVC 中的应用,以及使用去卷积和卷积方法评估时间标度因子。

Comparison of Alternative Population Modeling Approaches for Implementing a Level A IVIVC and for Assessing the Time-Scaling Factor Using Deconvolution and Convolution-Based Methods.

机构信息

R&D, Pharmacometrica, Lieu-dit Longcol, 12270, La Fouillade, France.

出版信息

AAPS J. 2020 Apr 15;22(3):67. doi: 10.1208/s12248-020-00445-0.

Abstract

Different approaches based on deconvolution and convolution analyses have been proposed to establish IVIVC. A new implementation of the convolution-based model was used to evaluate the time-scaled IVIVC using the convolution (method 1) and the deconvolution-based (method 2) approaches. With the deconvolution-based approach, time-scaling was detected and estimated using Levy's plots while with the convolution-based approach, time-scaling was directly determined by a time-scaling sub-model of the convolution integral model by nonlinear regression. The objectives of this study were (i) to show how time-scaled deconvolution and convolution-based approaches can be implemented using population modeling approach using standard nonlinear mixed-effect modeling software such as NONMEM and R, and (ii) to compare the performances of the two methods for assessing IVIVC using complex in vivo drug release process. The impact of different PK scenarios (linear and nonlinear PK disposition models, and increasing levels of inter-individual variability (IIV) on in vivo drug release process) was considered. The performances of the methods were assessed by computing the prediction error (%PE) on C, AUC, and partial AUC values. The mean %PE values estimated with the two methods were compliant with the IVIVC validation criteria. However, different from convolution-based, deconvolution-based approach showed that (i) the increase of IIV on in vivo drug release significantly affects the maximal %PE values of C leading to failure of IVIVC validation, and (ii) larger %PE values for C were associated to complex nonlinear PK disposition models. These results suggest that convolution-based approach could be considered at preferred approach for assessing time-scaled IVIVC.

摘要

已经提出了基于去卷积和卷积分析的不同方法来建立 IVIVC。使用基于卷积的新模型实现来评估使用卷积(方法 1)和基于去卷积的(方法 2)方法进行时间缩放的 IVIVC。在基于去卷积的方法中,通过 Levy 图检测和估计时间缩放,而在基于卷积的方法中,时间缩放通过卷积积分模型的时间缩放子模型通过非线性回归直接确定。本研究的目的是:(i)展示如何使用群体建模方法使用标准的非线性混合效应建模软件(如 NONMEM 和 R)来实现时间缩放的去卷积和基于卷积的方法;(ii)比较这两种方法在评估使用复杂体内药物释放过程的 IVIVC 时的性能。考虑了不同 PK 情景(线性和非线性 PK 处置模型,以及个体间变异性(IIV)水平的增加)对体内药物释放过程的影响。通过计算 C、AUC 和部分 AUC 值的预测误差(%PE)来评估方法的性能。这两种方法估计的平均%PE 值符合 IVIVC 验证标准。然而,与基于卷积的方法不同,基于去卷积的方法表明:(i)体内药物释放的 IIV 增加会显著影响 C 的最大%PE 值,导致 IVIVC 验证失败;(ii)C 的较大%PE 值与复杂的非线性 PK 处置模型相关。这些结果表明,基于卷积的方法可以被认为是评估时间缩放 IVIVC 的首选方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验