Suppr超能文献

用于预测溶血的美国食品药品监督管理局基准喷嘴几何形状内流动的大涡模拟

Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.

作者信息

Tobin Nicolas, Manning Keefe B

机构信息

Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.

出版信息

Cardiovasc Eng Technol. 2020 Jun;11(3):254-267. doi: 10.1007/s13239-020-00461-3. Epub 2020 Apr 15.

Abstract

PURPOSE

Modeling of hemolysis due to fluid stresses faces significant methodological challenges, particularly in geometries with turbulence or complex flow patterns. It is currently unclear how existing phenomenological blood-damage models based on laminar viscous stresses can be implemented into turbulent computational fluid dynamics simulations. The aim of this work is to generalize the existing laminar models to turbulent flows based on first principles, and validate this generalization with existing experimental data.

METHODS

A novel analytical and numerical framework for the simulation of flow-induced hemolysis based on the intermittency-corrected turbulent viscous shear stress (ICTVSS) is introduced. The proposed large-eddy simulation framework is able to seamlessly transition from laminar to turbulent conditions in a single flow domain by linking laminar shear stresses to dissipation of mechanical energy, accounting for intermittency in turbulent dissipation, and relying on existing power-law hemolysis models. Simulations are run to reproduce previously published hemolysis data with bovine blood in a benchmark geometry. Two sets of experimental data are relied upon to tune power-law parameters and justify that tuning. The first presents hemolysis measurements in a simple laminar flow, and the second is hemolysis in turbulent flow through the FDA benchmark nozzle. Validation is performed by simulation of blood injected into a turbulent jet of phosphate-buffered saline, with modifications made to account for the local concentration of blood.

RESULTS

Hemolysis predictions are found to be very sensitive to power-law parameters in the turbulent case, though a set of parameters is presented that both matches the turbulent data and is well-justified by the laminar data. The model is shown to be able to predict the general behavior of hemolysis in a second turbulent case. Results suggest that wall shear may play a dominant role in most cases.

CONCLUSION

The ICTVSS framework of generalizing laminar power-law models to turbulent flows shows promise, but would benefit from further numerical validation and carefully designed experiments.

摘要

目的

由于流体应力导致的溶血建模面临重大方法挑战,尤其是在存在湍流或复杂流动模式的几何形状中。目前尚不清楚基于层流粘性应力的现有唯象血液损伤模型如何应用于湍流计算流体动力学模拟。这项工作的目的是基于第一原理将现有的层流模型推广到湍流,并利用现有实验数据验证这种推广。

方法

引入了一种基于间歇性校正湍流粘性剪切应力(ICTVSS)的流动诱导溶血模拟的新型分析和数值框架。所提出的大涡模拟框架能够通过将层流剪切应力与机械能耗散联系起来,考虑湍流耗散的间歇性,并依赖现有的幂律溶血模型,在单个流动域中从层流无缝过渡到湍流条件。进行模拟以在基准几何形状中重现先前发表的牛血溶血数据。依靠两组实验数据来调整幂律参数并证明这种调整的合理性。第一组给出了简单层流中的溶血测量结果,第二组是通过FDA基准喷嘴的湍流中的溶血。通过模拟注入磷酸盐缓冲盐水湍流射流中的血液进行验证,并进行了修改以考虑血液的局部浓度。

结果

发现在湍流情况下,溶血预测对幂律参数非常敏感,尽管给出了一组既与湍流数据匹配又由层流数据充分证明合理的参数。该模型被证明能够预测第二个湍流情况下溶血的一般行为。结果表明,在大多数情况下壁面剪切可能起主导作用。

结论

将层流幂律模型推广到湍流的ICTVSS框架显示出前景,但将受益于进一步的数值验证和精心设计的实验。

相似文献

9
On the representation of effective stress for computing hemolysis.关于计算溶血时有效应力的表示。
Biomech Model Mechanobiol. 2019 Jun;18(3):665-679. doi: 10.1007/s10237-018-01108-y. Epub 2019 Jan 2.

引用本文的文献

6
Equivalent Scalar Stress Formulation Taking into Account Non-Resolved Turbulent Scales.考虑未解析湍流尺度的等效标量应力公式。
Cardiovasc Eng Technol. 2021 Jun;12(3):251-272. doi: 10.1007/s13239-021-00526-x. Epub 2021 Mar 5.

本文引用的文献

1
An energy-dissipation-based power-law formulation for estimating hemolysis.基于能量耗散的幂律公式用于估计溶血。
Biomech Model Mechanobiol. 2020 Apr;19(2):591-602. doi: 10.1007/s10237-019-01232-3. Epub 2019 Oct 14.
8
Turbulence in blood damage modeling.血液损伤建模中的湍流。
Int J Artif Organs. 2016 Jun 15;39(4):160-5. doi: 10.5301/ijao.5000476. Epub 2016 Mar 30.
10
Shear-Induced Hemolysis: Species Differences.剪切诱导的溶血:物种差异
Artif Organs. 2015 Sep;39(9):795-802. doi: 10.1111/aor.12459. Epub 2015 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验