Bissonnette Stéphanie, Del Grosso Erica, Simon Anna J, Plaxco Kevin W, Ricci Francesco, Vallée-Bélisle Alexis
Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
ACS Sens. 2020 Jul 24;5(7):1937-1942. doi: 10.1021/acssensors.0c00237. Epub 2020 Apr 28.
To ensure maximum specificity (i.e., minimize cross-reactivity with structurally similar analogues of the desired target), most bioassays invoke "stringency", the careful tuning of the conditions employed (e.g., pH, ionic strength, or temperature). Willingness to control assay conditions will fall, however, as quantitative, single-step biosensors begin to replace multistep analytical processes. This is especially true for sensors deployed in vivo, where the tuning of such parameters is not just inconvenient but impossible. In response, we describe here the rational adaptation of two strategies employed by nature to tune the affinity of biomolecular receptors so as to optimize the placement of their specificity "windows" without the need to alter measurement conditions: structure-switching and allosteric control. We quantitatively validate these approaches using two distinct, DNA-based receptors: a simple, linear-chain DNA suitable for detecting a complementary DNA strand and a structurally complex DNA aptamer used for the detection of a small-molecule drug. Using these models, we show that, without altering assay conditions, structure-switching and allostery can tune the concentration range over which a receptor achieves optimal specificity over orders of magnitude, thus optimally matching the specificity window with the range of target concentrations expected to be seen in a given application.
为确保最大特异性(即尽量减少与所需靶标结构相似类似物的交叉反应),大多数生物测定法都采用“严格性”,即仔细调整所采用的条件(例如pH、离子强度或温度)。然而,随着定量单步生物传感器开始取代多步分析过程,控制测定条件的意愿将会降低。对于体内部署的传感器而言尤其如此,在体内调整此类参数不仅不方便,而且是不可能的。作为回应,我们在此描述合理采用自然界用于调节生物分子受体亲和力的两种策略,以便在无需改变测量条件的情况下优化其特异性“窗口”的位置:结构转换和变构控制。我们使用两种不同的基于DNA的受体对这些方法进行了定量验证:一种适用于检测互补DNA链的简单线性链DNA,以及一种用于检测小分子药物的结构复杂的DNA适配体。使用这些模型,我们表明,在不改变测定条件的情况下,结构转换和变构可以在几个数量级上调节受体实现最佳特异性的浓度范围,从而使特异性窗口与给定应用中预期会遇到的靶标浓度范围实现最佳匹配。