Suppr超能文献

基于折叠的电化学生物传感器:响应性核酸结构的案例。

Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.

出版信息

Acc Chem Res. 2010 Apr 20;43(4):496-505. doi: 10.1021/ar900165x.

Abstract

Biomolecular recognition is versatile, specific, and high affinity, qualities that have motivated decades of research aimed at adapting biomolecules into a general platform for molecular sensing. Despite significant effort, however, so-called "biosensors" have almost entirely failed to achieve their potential as reagentless, real-time analytical devices; the only quantitative, reagentless biosensor to achieve commercial success so far is the home glucose monitor, employed by millions of diabetics. The fundamental stumbling block that has precluded more widespread success of biosensors is the failure of most biomolecules to produce an easily measured signal upon target binding. Antibodies, for example, do not change their shape or dynamics when they bind their recognition partners, nor do they emit light or electrons upon binding. It has thus proven difficult to transduce biomolecular binding events into a measurable output signal, particularly one that is not readily spoofed by the binding of any of the many potentially interfering species in typical biological samples. Analytical approaches based on biomolecular recognition are therefore mostly cumbersome, multistep processes relying on analyte separation and isolation (such as Western blots, ELISA, and other immunochemical methods); these techniques have proven enormously useful, but are limited almost exclusively to laboratory settings. In this Account, we describe how we have refined a potentially general solution to the problem of signal detection in biosensors, one that is based on the binding-induced "folding" of electrode-bound DNA probes. That is, we have developed a broad new class of biosensors that employ electrochemistry to monitor binding-induced changes in the rigidity of a redox-tagged probe DNA that has been site-specifically attached to an interrogating electrode. These folding-based sensors, which have been generalized to a wide range of specific protein, nucleic acid, and small-molecule targets, are rapid (responding in seconds to minutes), sensitive (detecting sub-picomolar to micromolar concentrations), and reagentless. They are also greater than 99% reusable, are supported on micrometer-scale electrodes, and are readily fabricated into densely packed sensor arrays. Finally, and critically, their signaling is linked to a binding-specific change in the physics of the probe DNA, and not simply to adsorption of the target onto the sensor head. Accordingly, they are selective enough to be employed directly in blood, crude soil extracts, cell lysates, and other grossly contaminated clinical and environmental samples. Indeed, we have recently demonstrated the ability to quantitatively monitor a specific small molecule in real-time directly in microliters of flowing, unmodified blood serum. Because of their sensitivity, substantial background suppression, and operational convenience, these folding-based biosensors appear potentially well suited for electronic, on-chip applications in pathogen detection, proteomics, metabolomics, and drug discovery.

摘要

生物分子识别具有多功能性、特异性和高亲和力,这些特性促使人们进行了数十年的研究,旨在将生物分子转化为分子传感的通用平台。然而,尽管付出了巨大的努力,所谓的“生物传感器”几乎完全未能实现其作为无试剂、实时分析设备的潜力;迄今为止,唯一实现商业成功的定量无试剂生物传感器是家庭血糖仪,数百万糖尿病患者都在使用它。生物传感器未能得到更广泛应用的根本障碍是,大多数生物分子在与靶标结合时无法产生易于测量的信号。例如,抗体在与识别伙伴结合时不会改变其形状或动力学,也不会在结合时发射光或电子。因此,将生物分子结合事件转化为可测量的输出信号非常困难,特别是对于典型生物样本中许多潜在干扰物质的结合,这种信号很难被检测到。因此,基于生物分子识别的分析方法大多是繁琐的多步骤过程,依赖于分析物的分离和隔离(如 Western blot、ELISA 和其他免疫化学方法);这些技术已经被证明非常有用,但几乎完全局限于实验室环境。在本报告中,我们描述了如何改进生物传感器中信号检测问题的潜在通用解决方案,该解决方案基于电极结合 DNA 探针的结合诱导“折叠”。也就是说,我们开发了一类广泛的新型生物传感器,该传感器利用电化学监测经特定位置附着在探测电极上的氧化还原标记探针 DNA 的结合诱导的刚性变化。这些基于折叠的传感器已经被推广到广泛的特定蛋白质、核酸和小分子靶标,具有快速(几秒钟到几分钟响应)、灵敏(检测亚皮摩尔到微摩尔浓度)和无试剂的特点。它们的重复使用率也大于 99%,支持在微米级电极上,并可轻松制成高密度传感器阵列。最后,也是至关重要的是,它们的信号与探针 DNA 的结合特异性物理变化相关联,而不仅仅与目标吸附到传感器头部相关。因此,它们具有足够的选择性,可直接用于血液、粗土提取物、细胞裂解物和其他严重污染的临床和环境样本。事实上,我们最近已经证明了在未修饰的微升流动血清中直接实时定量监测特定小分子的能力。由于其灵敏度、大量背景抑制和操作方便性,这些基于折叠的生物传感器似乎非常适合电子、芯片应用于病原体检测、蛋白质组学、代谢组学和药物发现。

相似文献

1
Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
Acc Chem Res. 2010 Apr 20;43(4):496-505. doi: 10.1021/ar900165x.
4
Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
Analyst. 2010 Mar;135(3):589-94. doi: 10.1039/b921253a. Epub 2010 Jan 12.
6
Target-responsive structural switching for nucleic acid-based sensors.
Acc Chem Res. 2010 May 18;43(5):631-41. doi: 10.1021/ar900245u.
9
Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9491-9499. doi: 10.1021/acsami.0c20707. Epub 2021 Jan 15.
10
Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
Bioelectrochemistry. 2009 Nov;77(1):1-12. doi: 10.1016/j.bioelechem.2009.04.007. Epub 2009 May 5.

引用本文的文献

1
The Energetics of Electron Transfer in Redox-DNA Layers Mimics That of Redox Proteins.
Chemistry. 2025 Jun 12;31(33):e202500838. doi: 10.1002/chem.202500838. Epub 2025 May 8.
2
Modular DNA origami-based electrochemical detection of DNA and proteins.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2311279121. doi: 10.1073/pnas.2311279121. Epub 2024 Dec 30.
3
Electrochemical detection of glutamate and histamine using redox-labeled stimuli-responsive polymer as a synthetic target receptor.
ACS Appl Polym Mater. 2024 May 24;6(10):5630-5641. doi: 10.1021/acsapm.4c00121. Epub 2024 May 10.
4
Photoelectrochemistry of Redox-Active Self-Assembled Monolayers Formed on n-Si/Au Nanoparticle Photoelectrodes.
Langmuir. 2024 Aug 20;40(33):17536-17546. doi: 10.1021/acs.langmuir.4c01751. Epub 2024 Aug 7.
6
Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals.
Biosensors (Basel). 2024 Feb 26;14(3):125. doi: 10.3390/bios14030125.
8
Device integration of electrochemical biosensors.
Nat Rev Bioeng. 2023;1(5):346-360. doi: 10.1038/s44222-023-00032-w. Epub 2023 Feb 24.
9
Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics.
Chem Sci. 2023 Mar 8;14(13):3652-3660. doi: 10.1039/d3sc00320e. eCollection 2023 Mar 29.
10
Explaining the Decay of Nucleic Acid-Based Sensors under Continuous Voltammetric Interrogation.
Anal Chem. 2023 Mar 21;95(11):4974-4983. doi: 10.1021/acs.analchem.2c05158. Epub 2023 Mar 7.

本文引用的文献

1
Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays.
Sensors (Basel). 2008 Nov 7;8(11):7050-7084. doi: 10.3390/s8117050.
2
Over-the-Counter Biosensors: Past, Present, and Future.
Sensors (Basel). 2008 Sep 6;8(9):5535-5559. doi: 10.3390/s8095535.
3
A general electrochemical method for label-free screening of protein-small molecule interactions.
Chem Commun (Camb). 2009 Nov 7(41):6222-4. doi: 10.1039/b911558g. Epub 2009 Aug 28.
4
i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes.
J Am Chem Soc. 2009 Sep 30;131(38):13813-8. doi: 10.1021/ja9051763.
5
A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II).
Analyst. 2009 Sep;134(9):1857-62. doi: 10.1039/b908457f. Epub 2009 Jun 25.
7
Challenges of electrochemical impedance spectroscopy in protein biosensing.
Anal Chem. 2009 May 15;81(10):3944-9. doi: 10.1021/ac9002358.
8
Surface chemistry effects on the performance of an electrochemical DNA sensor.
Bioelectrochemistry. 2009 Sep;76(1-2):208-13. doi: 10.1016/j.bioelechem.2009.03.007. Epub 2009 Mar 20.
10
Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline.
Langmuir. 2009 Apr 21;25(8):4279-83. doi: 10.1021/la804309j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验