Suppr超能文献

定量中下位 MS 分析 Parkin 介导的泛素链组装。

Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly.

机构信息

Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States.

Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, United States.

出版信息

J Am Soc Mass Spectrom. 2020 May 6;31(5):1132-1139. doi: 10.1021/jasms.0c00058. Epub 2020 Apr 28.

Abstract

Misregulation of the E3 ubiquitin ligase Parkin and the kinase PINK1 underlie both inherited and idiopathic Parkinson's disease-associated neurodegeneration. Parkin and PINK1 work together to catalyze the assembly of ubiquitin chains on substrates located on the outer mitochondrial membrane to facilitate autophagic removal of damaged mitochondria through a process termed mitophagy. Quantitative measurements of Parkin-mediated chain assembly, both and on mitochondria, have revealed that chains are composed of Lys6, Lys11, Lys48, and Lys63 linkages. The combinatorial nature of these chains is further expanded by the ability of PINK1 to phosphorylate individual subunits. The precise architecture of chains produced by the coordinated action of PINK1 and Parkin, however, are unknown. Here, we demonstrate that quantitative middle-down mass spectrometry using uniformly N-labeled ubiquitin variants as internal standards informs on the extent of chain branching. We find that Parkin is a prolific branching enzyme . Quantitative middle-down mass spectrometry also reveals that phospho-Ser65-ubiquitin (pSer65-Ub)-a key activator of Parkin-is not incorporated into chains to a significant extent. Our results suggest that Parkin-mediated chain branching is "on-pathway", and branch points are the principal targets of the deubiquitinase USP30.

摘要

E3 泛素连接酶 Parkin 和激酶 PINK1 的失调是遗传性和特发性帕金森病相关神经退行性变的基础。Parkin 和 PINK1 共同作用,催化位于线粒体外膜上的底物上泛素链的组装,通过称为自噬的过程促进受损线粒体的自噬去除。Parkin 介导的链组装的定量测量,无论是在 还是在线粒体上,都表明链由 Lys6、Lys11、Lys48 和 Lys63 连接组成。这些链的组合性质通过 PINK1 磷酸化单个亚基的能力进一步扩展。然而,PINK1 和 Parkin 协调作用产生的链的精确结构尚不清楚。在这里,我们证明使用均一 N 标记的泛素变体作为内部标准的定量中向下质谱法可反映链分支的程度。我们发现 Parkin 是一种多产的分支酶。定量中向下质谱法还表明,磷酸化丝氨酸 65-泛素(pSer65-Ub)——Parkin 的关键激活剂——在很大程度上没有掺入链中。我们的结果表明,Parkin 介导的链分支是“在途”的,分支点是去泛素酶 USP30 的主要靶标。

相似文献

1
Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly.
J Am Soc Mass Spectrom. 2020 May 6;31(5):1132-1139. doi: 10.1021/jasms.0c00058. Epub 2020 Apr 28.
2
Mechanism and regulation of the Lys6-selective deubiquitinase USP30.
Nat Struct Mol Biol. 2017 Nov;24(11):920-930. doi: 10.1038/nsmb.3475. Epub 2017 Sep 25.
3
Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond.
Free Radic Biol Med. 2016 Nov;100:210-222. doi: 10.1016/j.freeradbiomed.2016.04.015. Epub 2016 Apr 16.
4
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6637-42. doi: 10.1073/pnas.1506593112. Epub 2015 May 12.
5
The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
Genes Dev. 2015 May 15;29(10):989-99. doi: 10.1101/gad.262758.115.
6
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy.
Nature. 2014 Jun 19;510(7505):370-5. doi: 10.1038/nature13418. Epub 2014 Jun 4.
7
PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy.
Cell Res. 2018 Aug;28(8):787-802. doi: 10.1038/s41422-018-0056-0. Epub 2018 Jun 22.
8
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.
EMBO Rep. 2015 Aug;16(8):939-54. doi: 10.15252/embr.201540352. Epub 2015 Jun 25.
9
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
Curr Genet. 2020 Aug;66(4):693-701. doi: 10.1007/s00294-020-01062-2. Epub 2020 Mar 10.
10
USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria.
Nat Cell Biol. 2015 Feb;17(2):160-9. doi: 10.1038/ncb3097. Epub 2015 Jan 26.

引用本文的文献

1
The emerging roles of non-canonical ubiquitination in proteostasis and beyond.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202311171. Epub 2024 Mar 22.
2
Assembly and disassembly of branched ubiquitin chains.
Front Mol Biosci. 2023 Jun 1;10:1197272. doi: 10.3389/fmolb.2023.1197272. eCollection 2023.
3
Proteomic approaches to study ubiquitinomics.
Biochim Biophys Acta Gene Regul Mech. 2023 Jun;1866(2):194940. doi: 10.1016/j.bbagrm.2023.194940. Epub 2023 Apr 29.
4
Triubiquitin Probes for Identification of Reader and Eraser Proteins of Branched Polyubiquitin Chains.
ACS Chem Biol. 2023 Apr 21;18(4):837-847. doi: 10.1021/acschembio.2c00898. Epub 2023 Mar 27.
5
Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions.
Methods Mol Biol. 2023;2602:19-38. doi: 10.1007/978-1-0716-2859-1_2.
7
Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke.
Front Mol Neurosci. 2022 Jan 28;14:786099. doi: 10.3389/fnmol.2021.786099. eCollection 2021.
8
Waiting for PARIS-A Biological Target in Search of a Drug.
J Parkinsons Dis. 2022;12(1):95-103. doi: 10.3233/JPD-212945.
9
Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications.
J Biol Chem. 2021 Nov;297(5):101339. doi: 10.1016/j.jbc.2021.101339. Epub 2021 Oct 22.
10
Regulation of ubiquitin and ubiquitin-like modifiers by phosphorylation.
FEBS J. 2022 Aug;289(16):4797-4810. doi: 10.1111/febs.16101. Epub 2021 Jul 21.

本文引用的文献

1
Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling.
Mol Cell. 2020 Mar 5;77(5):1124-1142.e10. doi: 10.1016/j.molcel.2019.11.013.
2
Insights into ubiquitin chain architecture using Ub-clipping.
Nature. 2019 Aug;572(7770):533-537. doi: 10.1038/s41586-019-1482-y. Epub 2019 Aug 15.
3
Mechanism of parkin activation by phosphorylation.
Nat Struct Mol Biol. 2018 Jul;25(7):623-630. doi: 10.1038/s41594-018-0088-7. Epub 2018 Jul 2.
4
Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics.
Mol Cell. 2018 Apr 19;70(2):211-227.e8. doi: 10.1016/j.molcel.2018.03.012. Epub 2018 Apr 12.
5
PINK1 autophosphorylation is required for ubiquitin recognition.
EMBO Rep. 2018 Apr;19(4). doi: 10.15252/embr.201744981. Epub 2018 Feb 23.
6
Building and decoding ubiquitin chains for mitophagy.
Nat Rev Mol Cell Biol. 2018 Jan 23;19(2):93-108. doi: 10.1038/nrm.2017.129.
7
Structure of PINK1 in complex with its substrate ubiquitin.
Nature. 2017 Dec 7;552(7683):51-56. doi: 10.1038/nature24645. Epub 2017 Oct 30.
8
Structure of PINK1 and mechanisms of Parkinson's disease-associated mutations.
Elife. 2017 Oct 5;6:e29985. doi: 10.7554/eLife.29985.
9
Mechanism and regulation of the Lys6-selective deubiquitinase USP30.
Nat Struct Mol Biol. 2017 Nov;24(11):920-930. doi: 10.1038/nsmb.3475. Epub 2017 Sep 25.
10
Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.
Mol Cell. 2017 Oct 5;68(1):233-246.e5. doi: 10.1016/j.molcel.2017.08.020. Epub 2017 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验