Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.
Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill Parkinson Program, McGill University, Montreal, QC, Canada.
Curr Genet. 2020 Aug;66(4):693-701. doi: 10.1007/s00294-020-01062-2. Epub 2020 Mar 10.
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses including high levels of reactive oxygen species and protein misfolding, which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate abnormal dysfunctional mitochondria. One such mechanism is mitophagy, a process which involves PTEN-induced putative kinase 1 (PINK1), a mitochondrial Ser/Thr kinase and Parkin, an E3 ubiquitin ligase, each encoded by genes responsible for early-onset autosomal recessive familial PD. Over 100 loss-of-function mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been reported to cause autosomal recessive early-onset PD. PINK1 acts upstream of Parkin and is essential for the mitochondrial localization and activation of Parkin. Upon mitochondrial damage, PINK1 builds up on the outer mitochondrial membrane (OMM) and mediates the activation of Parkin. Activated Parkin then ubiquitinates numerous OMM proteins, eliciting mitochondrial autophagy (mitophagy). As a result, damaged mitochondrial components can be selectively eliminated. Thus, PINK1 acts a sensor of damage via fine-tuning of its levels on mitochondria, where it activates Parkin to orchestrate the clearance of unhealthy mitochondria. Previous work has unveiled that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of PINK1, and thus fine-tune PINK1-dependent mitochondrial quality control pathway. Herein, we briefly discuss the interconnection between N-end rule degradation pathways and mitophagy in the context of N-degron mediated degradation of mitochondrial kinase PINK1 and highlight some of the future prospects.
帕金森病(PD)是一种进行性神经退行性疾病,其特征是黑质中特定的一组多巴胺能神经元逐渐丧失。重要的是,目前的治疗方法仅针对 PD 的症状,而不是潜在的分子原因。同时,导致遗传性 PD 的基因的功能表明线粒体功能障碍是 PD 发病机制的主要因素。线粒体面临的一个固有挑战是持续暴露于多种应激中,包括高水平的活性氧和蛋白质错误折叠,这增加了它们失调的可能性。作为回应,真核细胞已经进化出复杂的质量控制机制来识别、修复和/或消除异常功能失调的线粒体。其中一种机制是线粒体自噬,这是一个涉及 PTEN 诱导的假定激酶 1(PINK1)、一种线粒体丝氨酸/苏氨酸激酶和 Parkin(一种 E3 泛素连接酶)的过程,它们分别由负责早发性常染色体隐性家族性 PD 的基因编码。已经报道了超过 100 种 PTEN 诱导的假定激酶 1(PINK1)基因的功能丧失突变导致常染色体隐性早发性 PD。PINK1 位于 Parkin 的上游,是线粒体定位和 Parkin 激活所必需的。在线粒体损伤时,PINK1 在线粒体外膜(OMM)上积累,并介导 Parkin 的激活。激活的 Parkin 然后泛素化许多 OMM 蛋白,引发线粒体自噬(mitophagy)。因此,可以选择性地消除受损的线粒体成分。因此,PINK1 通过微调其在线粒体上的水平作为损伤的传感器,激活 Parkin 来协调清除不健康的线粒体。以前的工作已经揭示了 Arg-N-末端规则降解途径(Arg-N-degron 途径)介导 PINK1 的降解,从而微调 PINK1 依赖的线粒体质量控制途径。在此,我们简要讨论了 N-末端规则降解途径和线粒体自噬之间的联系,背景是线粒体激酶 PINK1 的 N-末端规则降解途径介导的降解,并强调了一些未来的前景。
Neurotox Res. 2022-8
Cell Mol Life Sci. 2019-6-28
Free Radic Biol Med. 2016-11
Nucleic Acids Res. 2025-2-27
Cell Death Discov. 2024-12-5
Neural Regen Res. 2025-4-1
Neuromolecular Med. 2023-12
Int J Mol Sci. 2023-8-24
Physiol Rev. 2023-10-1