Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
Proteome Center Tübingen, University of Tübingen, Tübingen, Germany.
J Biol Chem. 2021 Nov;297(5):101339. doi: 10.1016/j.jbc.2021.101339. Epub 2021 Oct 22.
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
线粒体是真核生物中的重要细胞器。线粒体的更新和质量控制在转录和翻译后水平受到多种细胞机制的调控。有缺陷的线粒体蛋白的清除由线粒体驻留蛋白酶介导,或通过单个蛋白的蛋白酶体降解来实现。大量线粒体的清除通过一种称为线粒体自噬的选择性自噬形式发生。在酵母和一些发育中的后生动物细胞(如卵母细胞和网织红细胞)中,线粒体主要通过不依赖泛素的机制被清除。在这种情况下,线粒体自噬的调控是通过线粒体锚定的自噬受体的磷酸化来介导的。另一方面,在细胞应激或疾病情况下,当功能失调的线粒体导致氧化损伤时,会发生依赖泛素的胞质自噬受体的募集。在哺乳动物细胞中,一种经过充分研究的由线粒体去极化诱导的依赖泛素的线粒体自噬途径受线粒体蛋白激酶PINK1调控,PINK1激活后会募集泛素连接酶帕金。在这里,我们综述线粒体自噬的机制,重点是调节各种线粒体自噬途径的翻译后修饰。我们描述了自噬成分,特别强调翻译后修饰。我们详细介绍了由PINK1介导的磷酸化以及帕金介导的线粒体蛋白的泛素化,这些过程可被去泛素化酶调节。我们还讨论了调节线粒体分裂/融合的辅助因子的作用以及与促凋亡和抗凋亡Bcl-2家族成员的相互作用。全面了解线粒体自噬过程对于理解健康和疾病中重要的线粒体更新至关重要。