Li Xianhui, Shao Senlin, Yang Yang, Mei Ying, Qing Weihua, Guo Hao, Peng Lu Elfa, Wang Peng, Tang Chuyang Y
Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China.
School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China.
ACS Appl Mater Interfaces. 2020 May 13;12(19):21596-21604. doi: 10.1021/acsami.0c02552. Epub 2020 Apr 28.
Decomposition of micropollutants using an electrocatalytic membrane reactor is a promising alternative to traditional advanced oxidation processes due to its high efficiency and environmental compatibility. Rational interface design of electrocatalysts in the membrane electrode is critical to the performance of the reactor. We herein developed a three-dimensional porous membrane electrode via in situ growth of one-dimensional RuO/TiO heterojunction nanorods on a carbon nanofiber membrane by a facile hydrothermal and subsequent thermal treatment approach. The membrane electrode was used as the anode in a gravity-driven electrocatalytic membrane reactor, exhibiting a high degradation efficiency of over 98% toward bisphenol-A and sulfadiazine. The superior electrocatalytic performance was attributed to the 1D RuO/TiO heterointerfacial structure, which provided the fast electron transfer, high generation rate of the hydroxyl radical, and large effective surface area. Our work paves a novel way for the fundamental understanding and designing of novel highly effective and low-consumptive electrocatalytic membranes for wastewater treatment.
使用电催化膜反应器分解微污染物是一种很有前景的替代传统高级氧化工艺的方法,因为它具有高效性和环境兼容性。膜电极中电催化剂的合理界面设计对反应器的性能至关重要。我们在此通过一种简便的水热法以及后续的热处理方法,在碳纳米纤维膜上原位生长一维RuO/TiO异质结纳米棒,开发了一种三维多孔膜电极。该膜电极被用作重力驱动电催化膜反应器中的阳极,对双酚A和磺胺嘧啶表现出超过98%的高降解效率。优异的电催化性能归因于一维RuO/TiO异质界面结构,它提供了快速的电子转移、高羟基自由基生成速率以及大的有效表面积。我们的工作为深入理解和设计用于废水处理的新型高效低耗电催化膜开辟了一条新途径。