Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China.
Acc Chem Res. 2020 May 19;53(5):1034-1045. doi: 10.1021/acs.accounts.9b00600. Epub 2020 Apr 16.
Programmed cell death (PCD) is fundamentally an indispensable process in all cellular activities, including cell development, wound healing, and immune surveillance of tumors (Galluzzi, L. et al. 2018, 25, 486-541). Malfunctioning of PCD has been shown to be closely related to human diseases such as acute pancreatitis, neurodegenerative diseases, and diverse types of cancers. To date, multiple PCD processes have been discovered and the corresponding regulatory pathways have been elucidated. For example, apoptosis and autophagy are two PCD mechanisms that have been well studied by sophisticated models and probe toolkits. However, limited genetic and chemical tools for other types of PCD hamper the elucidation of their molecular mechanisms. Our group has been studying PCD using both function-oriented synthesis and chemical biology strategies, including the development of diverse chemical probes based on novel PCD modulators. For instance, in the development of downstream programmed necrosis (or necroptosis) inhibitor necrosulfonamide, we used a chemical probe to unveil a functional protein that was not previously implicated in necroptosis, mixed lineage kinase domain-like protein (MLKL). In addition, high throughput screening and medicinal chemistry enabled the discovery of bioymifi, a small molecule agonist which selectively causes oligomerization of the death receptor 5 (DR5), to induce extrinsic apoptosis. Furthermore, we developed a biomimetic synthetic strategy based on diverse Diels-Alder reactions in the total syntheses of ainsliadimers A and B, ainsliatrimers A and B, and gonchnatiolides A-C, which are natural product inhibitors or activators for PCD. Using synthetic ainsliadimer A probe, we elucidated that ainsliadimer A inhibits the NF-κB pathway by covalently binding to Cys46 of IKKβ and triggers apoptosis of cancer cells. We have also revealed that IKKβ is allosterically inhibited by ainsliadimer A. In addition to total synthesis, we have developed a bioorthogonal click hetero-Diels-Alder cycloaddition of vinyl thioether and -quinolinone quinone methide (TQ-ligation) to facilitate small molecule target identification. The combination of total synthesis and TQ-ligation enables subcellular imaging and identification of the cellular target of ainsliatrimer A to be PPARγ. In addition, TQ-ligation has been applied in the discovery of heat shock protein 90 (HSP90) as one of the functional target proteins for kongensin A. We also confirmed that kongensin A covalently attaches to Cys420 within HSP90 and demonstrated that kongensin A blocks the interaction between HSP90 and CDC37 and subsequently inhibits necroptosis. Our development of these diverse PCD modulators provides not only effective chemical tools for fundamental biomedical research, but also the foundation for drug discovery targeting important human diseases such as cancers and inflammation caused by malfunction of PCD.
程序性细胞死亡(PCD)是所有细胞活动中不可或缺的基本过程,包括细胞发育、伤口愈合和肿瘤的免疫监视(Galluzzi,L.等,2018,25,486-541)。PCD 的功能障碍与人类疾病密切相关,如急性胰腺炎、神经退行性疾病和多种类型的癌症。迄今为止,已经发现了多种 PCD 过程,并阐明了相应的调节途径。例如,凋亡和自噬是两种 PCD 机制,已经通过复杂的模型和探针工具包进行了很好的研究。然而,用于其他类型 PCD 的有限的遗传和化学工具阻碍了其分子机制的阐明。我们的团队一直在使用面向功能的合成和化学生物学策略研究 PCD,包括基于新型 PCD 调节剂的各种化学探针的开发。例如,在下游程序性坏死(或坏死性凋亡)抑制剂坏死磺酰胺的开发中,我们使用化学探针揭示了一种以前与坏死性凋亡无关的功能性蛋白质,即混合谱系激酶结构域样蛋白(MLKL)。此外,高通量筛选和药物化学使我们能够发现生物模拟物,一种选择性地引起死亡受体 5(DR5)寡聚化以诱导外在凋亡的小分子激动剂。此外,我们开发了一种基于多种 Diels-Alder 反应的仿生合成策略,用于合成ainsliadimers A 和 B、ainsliatrimers A 和 B 以及 gonchnatiolides A-C 的全合成,这些天然产物是 PCD 的抑制剂或激活剂。使用合成的 ainsliadimer A 探针,我们阐明了 ainsliadimer A 通过与 IKKβ 的 Cys46 共价结合抑制 NF-κB 途径,并触发癌细胞凋亡。我们还揭示了 ainsliadimer A 对 IKKβ 具有别构抑制作用。除了全合成,我们还开发了生物正交点击杂 Diels-Alder 乙烯基硫醚和 -喹啉酮醌甲化物(TQ-连接)环加成反应,以促进小分子靶标鉴定。全合成和 TQ-连接的结合实现了 ainsliatrimer A 的亚细胞成像和细胞靶标鉴定为 PPARγ。此外,TQ-连接已应用于发现热休克蛋白 90(HSP90)作为 kongensin A 的功能靶蛋白之一。我们还证实,kongensin A 与 HSP90 内的 Cys420 共价结合,并证明 kongensin A 阻断 HSP90 与 CDC37 之间的相互作用,随后抑制坏死性凋亡。我们对这些不同的 PCD 调节剂的开发不仅为基础生物医学研究提供了有效的化学工具,也为靶向癌症等重要人类疾病和由 PCD 功能障碍引起的炎症的药物发现奠定了基础。