Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Elife. 2020 Apr 16;9:e53740. doi: 10.7554/eLife.53740.
Thylakoid membranes scaffold an assortment of large protein complexes that work together to harness the energy of light. It has been a longstanding challenge to visualize how the intricate thylakoid network organizes these protein complexes to finely tune the photosynthetic reactions. Previously, we used in situ cryo-electron tomography to reveal the native architecture of thylakoid membranes (Engel et al., 2015). Here, we leverage technical advances to resolve the individual protein complexes within these membranes. Combined with a new method to visualize membrane surface topology, we map the molecular landscapes of thylakoid membranes inside green algae cells. Our tomograms provide insights into the molecular forces that drive thylakoid stacking and reveal that photosystems I and II are strictly segregated at the borders between appressed and non-appressed membrane domains. This new approach to charting thylakoid topology lays the foundation for dissecting photosynthetic regulation at the level of single protein complexes within the cell.
类囊体膜支架支撑着各种大型蛋白复合物,这些复合物协同工作以利用光能。长期以来,人们一直试图直观地了解复杂的类囊体网络如何组织这些蛋白复合物,以精细调节光合作用反应。此前,我们使用原位冷冻电子断层扫描技术揭示了类囊体膜的天然结构(Engel 等人,2015 年)。在这里,我们利用技术进步来解析这些膜中的单个蛋白复合物。结合一种新的可视化膜表面拓扑的方法,我们绘制了绿藻细胞内类囊体膜的分子景观。我们的断层扫描图像提供了关于驱动类囊体堆叠的分子力的见解,并揭示了光系统 I 和光系统 II 在压紧和非压紧膜区域之间的边界处严格分离。这种绘制类囊体拓扑的新方法为在细胞内单个蛋白复合物水平上解析光合作用调控奠定了基础。