Hu Guangwei, Krasnok Alex, Mazor Yarden, Qiu Cheng-Wei, Alù Andrea
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583.
Photonics Initiative, Advanced Science Research Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States.
Nano Lett. 2020 May 13;20(5):3217-3224. doi: 10.1021/acs.nanolett.9b05319. Epub 2020 Apr 23.
Recent advances in twistronics of low-dimensional materials, such as bilayer graphene and transition-metal dichalcogenides, have enabled a plethora of unusual phenomena associated with moiré physics. However, several of these effects require demanding manipulation of superlattices at the atomic scale, such as the careful control of rotation angle between two closely spaced atomic lattices. Here, we study moiré hyperbolic plasmons in pairs of hyperbolic metasurfaces (HMTSs), unveiling analogous phenomena at the mesoscopic scale. HMTSs are known to support confined surface waves collimated toward specific directions determined by the metasurface dispersion. By rotating two evanescently coupled HMTSs with respect to one another, we unveil rich dispersion engineering, topological transitions at , broadband field canalization, and plasmon spin-Hall phenomena. These findings open remarkable opportunities to advance metasurface optics, enriching it with moiré physics and twistronic concepts.
低维材料(如双层石墨烯和过渡金属二硫族化合物)的扭曲电子学的最新进展,使得大量与莫尔物理学相关的异常现象成为可能。然而,其中一些效应需要在原子尺度上对超晶格进行严格操控,例如精确控制两个紧密间隔的原子晶格之间的旋转角度。在此,我们研究了双曲超表面(HMTS)对中的莫尔双曲等离子体激元,揭示了介观尺度上的类似现象。已知HMTS支持被限制在特定方向的表面波,这些方向由超表面色散决定。通过使两个渐逝耦合的HMTS相互旋转,我们揭示了丰富的色散工程、特定频率处的拓扑转变、宽带场管道化以及等离子体自旋霍尔现象。这些发现为推进超表面光学开辟了显著机遇,用莫尔物理学和扭曲电子学概念丰富了超表面光学。