Suppr超能文献

光子莫尔晶格中的光局域和非局域。

Localization and delocalization of light in photonic moiré lattices.

机构信息

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nature. 2020 Jan;577(7788):42-46. doi: 10.1038/s41586-019-1851-6. Epub 2019 Dec 18.

Abstract

Moiré lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moiré lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers, graphene-graphene layers and graphene quasicrystals on a silicon carbide surface. The recent surge of interest in moiré lattices arises from the possibility of exploring many salient physical phenomena in such systems; examples include commensurable-incommensurable transitions and topological defects, the emergence of insulating states owing to band flattening, unconventional superconductivity controlled by the rotation angle, the quantum Hall effect, the realization of non-Abelian gauge potentials and the appearance of quasicrystals at special rotation angles. A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moiré lattices. Here we experimentally create two-dimensional photonic moiré lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flat-band physics, in contrast to previous schemes based on light diffusion in optical quasicrystals, where disorder is required for the onset of Anderson localization (that is, wave localization in random media). Using commensurable and incommensurable moiré patterns, we experimentally demonstrate the two-dimensional localization-delocalization transition of light. Moiré lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.

摘要

莫尔晶格由两个具有相对旋转角的相同周期性结构叠加而成。莫尔晶格在日常生活中有多种应用,包括艺术设计、纺织工业、建筑、图像处理、计量学和干涉测量。在科学研究中,它们是通过在碳化硅表面上的耦合石墨烯-六方氮化硼单层、石墨烯-石墨烯层和石墨烯准晶来制造的。莫尔晶格最近受到关注,是因为有可能在这些系统中探索许多显著的物理现象;例如,同调-非同调跃迁和拓扑缺陷、由于能带扁平化而出现的绝缘态、由旋转角控制的非常规超导、量子霍尔效应、非阿贝尔规范势的实现以及在特殊旋转角出现准晶体。一个尚未探索的基本问题是莫尔晶格定义的势中波的演化。在这里,我们实验创建了二维光子莫尔晶格,与材料对应物不同,它们具有易于控制的参数和对称性,使我们能够探索具有根本不同几何形状的结构之间的转变(周期性、一般非周期性和准晶)。我们观察到基于平坦带物理的确定性线性晶格中的光局域化,与以前基于光在光学准晶体中的扩散的方案形成对比,其中需要无序才能出现安德森局域化(即随机介质中的波局域化)。使用同调和非同调莫尔图案,我们实验演示了光的二维局域-离域转变。莫尔晶格的几何形状几乎可以任意,与子晶格的晶体学点群一致,因此为控制光图案的特性和探索与多个科学领域相关的周期性-非周期性相变和二维波包现象的物理提供了有力工具,包括光学、声学、凝聚态物质和原子物理学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验