Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Sci Total Environ. 2020 Jul 10;725:138453. doi: 10.1016/j.scitotenv.2020.138453. Epub 2020 Apr 4.
Selenium (Se) at very low doses has important functions for humans. Unfortunately, the low levels of Se in soils in various regions of the world have implemented the agronomic biofortification of crops by applying Se-enriched fertilizers (mainly based on selenate). Lately, the use of nanofertilizers is growing in interest as their low size reduces the amount of chemicals and minimizes nutrient losses in comparison with conventional bulk fertilizers. However, the knowledge on their fate and environmental impact is still scarce. This study aims to evaluate the biotransformation of chitosan-modified Se nanoparticles (Ch-SeNPs) as well as their effect on the metabolism of essential metals (Fe, Cu, Zn and Mo) when applied to hydroponic cultivation of R. sativus and B. juncea. In house-synthesized Ch-SeNPs were characterized in both synthesis and hydroponic culture media by transmission electron microscopy (TEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The composition of one-tenth strength Hoagland's solution did not affect the size, shape and concentration in number of particles per mL of Ch-SeNPs. The plants were grown inside a box at 25 °C during the months of May-July in 2018. After a week of treatment with Ch-SeNPs, plants were harvested and divided into roots and aerial part. The biotransformation of Ch-SeNPs was evaluated through a process of enzymatic hydrolysis and subsequent analysis by HPLC-ICP-MS and HPLC-ESI-MS/MS. The results confirmed the transformation of Ch-SeNPs to seleno-amino acids: Selenomethionine (SeMet), Semethylselenocysteine (SeMetSeCys) and ɣ-glutamyl-Se-MetSeCys. Moreover, Multiple-way analysis of variance (ANOVA) and principal component analysis (PCA) showed that, regardless the plant species, Ch-SeNPs supplementation affected the absorption of Zn.
硒(Se)在非常低的剂量下对人类具有重要的功能。不幸的是,由于世界上各个地区土壤中的硒含量较低,因此通过施加富含硒的肥料(主要基于硒酸盐)来实现了作物的农业生物强化。最近,纳米肥料的使用越来越受到关注,因为其较小的尺寸减少了与常规大量肥料相比的化学品用量和养分损失。然而,关于其命运和环境影响的知识仍然很少。本研究旨在评估壳聚糖修饰的硒纳米颗粒(Ch-SeNPs)的生物转化,以及将其应用于水培条件下的萝卜和油菜生长时对必需金属(Fe、Cu、Zn 和 Mo)代谢的影响。在实验室合成的 Ch-SeNPs 通过透射电子显微镜(TEM)、动态光散射(DLS)和纳米颗粒跟踪分析(NTA)在合成和水培培养基中进行了表征。十分之一强度的 Hoagland 溶液的组成不影响 Ch-SeNPs 的尺寸、形状和每毫升颗粒数的浓度。植物于 2018 年 5 月至 7 月在 25°C 的盒子内生长。用 Ch-SeNPs 处理一周后,收获植物并分为根部和地上部分。通过酶水解过程和随后通过 HPLC-ICP-MS 和 HPLC-ESI-MS/MS 分析来评估 Ch-SeNPs 的生物转化。结果证实 Ch-SeNPs 转化为硒氨基酸:硒蛋氨酸(SeMet)、半胱氨酸硒代蛋氨酸(SeMetSeCys)和γ-谷氨酰基-Se-MetSeCys。此外,多向方差分析(ANOVA)和主成分分析(PCA)表明,无论植物种类如何,Ch-SeNPs 的补充都会影响 Zn 的吸收。