Dey Bijoy, Mondal Arpan, Konar Sanjit
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal bypass road, Bhauri, Bhopal, 462066, MP, India.
Chem Asian J. 2020 Jun 2;15(11):1709-1721. doi: 10.1002/asia.202000156. Epub 2020 Apr 30.
The reaction of Fe(NCS) prepared in situ in MeOH with 5-X-SalEen ligands (5-X-SalEen=condensation product of 5-substituted salicylaldehyde and N-ethylethylenediamine) provided three Fe(III) complexes, [Fe(5-X-SalEen) ]NCS; X=Me (1), X=Br (2), X=OMe (3). All the complexes reveal similar structural features but a very different magnetic profile. Complex 1 shows a gradual spin crossover while complexes 2 and 3 show a sharp spin transition. The T for complex 2 is 237 K while for complex 3 it is much higher with a value of 361 K. The spin transition temperature is shifted towards higher temperature with increasing electron-donation ability of the ligand substituents. This experimental observation has been rationalized with DFT calculations. UV-Vis and cyclic voltammetry studies support the fact that the electron density on the ligand increases from Me to Br to OMe substituents. To understand the change in spin states, temperature-dependent EPR spectra have been recorded. The spin state equilibrium in the liquid state has been probed with Evans NMR spectroscopic method, and thermodynamic parameters have been evaluated for all complexes.
在甲醇中原位制备的Fe(NCS)与5-X-SalEen配体(5-X-SalEen = 5-取代水杨醛与N-乙基乙二胺的缩合产物)反应,得到了三种Fe(III)配合物,[Fe(5-X-SalEen)]NCS;X = Me (1),X = Br (2),X = OMe (3)。所有配合物都呈现出相似的结构特征,但磁学性质却大不相同。配合物1显示出逐渐的自旋交叉,而配合物2和3则显示出尖锐的自旋转变。配合物2的转变温度为237 K,而配合物3的转变温度则高得多,为361 K。随着配体取代基给电子能力的增强,自旋转变温度向更高温度移动。这一实验观察结果已通过密度泛函理论(DFT)计算得到合理解释。紫外-可见光谱和循环伏安法研究支持了这样一个事实,即配体上的电子密度从甲基取代基到溴取代基再到甲氧基取代基逐渐增加。为了理解自旋态的变化,记录了温度依赖的电子顺磁共振(EPR)光谱。采用埃文斯核磁共振光谱法探测了液态下的自旋态平衡,并评估了所有配合物的热力学参数。