Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
Institute of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
J Am Chem Soc. 2020 May 13;142(19):8897-8909. doi: 10.1021/jacs.0c02234. Epub 2020 May 1.
A series of copper(I) complexes bearing a cyclic (amino)(aryl)carbene (CAArC) ligand with various complex geometries have been investigated in great detail with regard to their structural, electronic, and photophysical properties. Comparison of [CuX(CAArC)] (X = Br (), Cbz (), acac (), Phacac (), Cp (), and Cp* ()) with known Cu complexes bearing cyclic (amino)(alkyl), monoamido, or diamido carbenes (CAAC, MAC, or DAC, respectively) as chromophore ligands reveals that the expanded π-system of the CAArC leads to relatively low energy absorption maxima between 350 and 550 nm in THF with high absorption coefficients of 5-15 × 10 M cm for -. Furthermore, - show intense deep red to near-IR emission involving their triplet excited states in the solid state and in PMMA films with λ = 621-784 nm. Linear [Cu(Cbz)(CAArC)] () has been found to be an exceptional deep red (λ = 621 nm, ϕ = 0.32, τ = 366 ns) thermally activated delayed fluorescence (TADF) emitter with a radiative rate constant of ca. 9 × 10 s, exceeding those of commercially employed Ir- or Pt-based emitters. Time-resolved transient absorption and fluorescence upconversion experiments complemented by quantum chemical calculations employing Kohn-Sham density functional theory and multireference configuration interaction methods as well as temperature-dependent steady-state and time-resolved luminescence studies provide a detailed picture of the excited-state dynamics of . To demonstrate the potential applicability of this new class of low-energy emitters in future photonic applications, such as nonclassical light sources for quantum communication or quantum cryptography, we have successfully conducted single-molecule photon-correlation experiments of , showing distinct antibunching as required for single-photon emitters.
一系列具有环状(氨基)(芳基)卡宾(CAArC)配体的铜(I)配合物,其具有各种复杂的几何形状,已对其结构、电子和光物理性质进行了详细研究。将 [CuX(CAArC)](X = Br(),Cbz(),acac(),Phacac(),Cp()和 Cp*())与已知的含有环状(氨基)(烷基)、单酰胺或二酰胺卡宾(CAAC、MAC 或 DAC,分别)作为发色团配体的 Cu 配合物进行比较,结果表明 CAArC 的扩展 π 体系导致在 THF 中在 350 和 550nm 之间具有相对较低的能量吸收最大值,吸收系数高达 5-15×10^4 M^-1 cm^-1。此外,-在固态和 PMMA 膜中显示出涉及三重态激发态的强烈深红色至近红外发射,λ = 621-784nm。线性 [Cu(Cbz)(CAArC)]()已被发现是一种异常深红色(λ = 621nm,ϕ = 0.32,τ = 366ns)热活化延迟荧光(TADF)发射体,其辐射速率常数约为 9×10^5 s^-1,超过了商业上使用的 Ir 或 Pt 基发射体。时间分辨瞬态吸收和荧光上转换实验辅以量子化学计算,使用 Kohn-Sham 密度泛函理论和多参考组态相互作用方法以及温度依赖的稳态和时间分辨发光研究,提供了 [Cu(Cbz)(CAArC)]的激发态动力学的详细情况。为了展示这种新型低能量发射器在未来光子应用中的潜在适用性,例如用于量子通信或量子加密的非经典光源,我们已经成功地对进行了单分子光子相关实验,显示出作为单光子发射器所需的明显反聚束。