Suppr超能文献

光活性过渡金属配合物的分子设计原理:给“光驱动”化学家的指南。

Molecular Design Principles for Photoactive Transition Metal Complexes: A Guide for "Photo-Motivated" Chemists.

作者信息

Morselli Giacomo, Reber Christian, Wenger Oliver S

机构信息

Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.

Département de chimie, Université de Montréal, Montréal QC H3C 3J7, Canada.

出版信息

J Am Chem Soc. 2025 Apr 9;147(14):11608-11624. doi: 10.1021/jacs.5c02096. Epub 2025 Mar 27.

Abstract

Luminescence and photochemistry involve electronically excited states that are inherently unstable and therefore spontaneously decay to electronic ground states, in most cases by nonradiative energy release that generates heat. This energy dissipation can occur on a time scale of 100 fs (∼10 s) and usually needs to be slowed down to at least the nanosecond (∼10 s) time scale for luminescence and intermolecular photochemistry to occur. This is a challenging task with many different factors to consider. An alternative emerging strategy is to target dissociative excited states that lead to metal-ligand bond homolysis on the subnanosecond time scale to access synthetically useful radicals. Based on a thorough review at the most recent advances in the field, this article aims to provide a concise guide to obtaining luminescent and photochemically useful coordination compounds with d-block elements. We hope to encourage "photo-motivated" chemists who have been reluctant to apply their synthetic and other knowledge to photophysics and photochemistry, and we intend to stimulate new approaches to the synthetic control of excited state behavior.

摘要

发光和光化学涉及本质上不稳定的电子激发态,因此会自发衰变到电子基态,在大多数情况下是通过产生热量的非辐射能量释放来实现的。这种能量耗散可以在100飞秒(约10⁻¹⁴秒)的时间尺度上发生,并且通常需要减慢到至少纳秒(约10⁻⁹秒)的时间尺度,以便发生发光和分子间光化学反应。这是一项具有许多不同因素需要考虑的具有挑战性的任务。一种新兴的替代策略是靶向解离激发态,这些激发态会在亚纳秒时间尺度上导致金属-配体键均裂,从而获得具有合成用途的自由基。基于对该领域最新进展的全面综述,本文旨在提供一份简明指南,介绍如何获得具有d族元素的发光且具有光化学用途的配位化合物。我们希望鼓励那些一直不愿将其合成及其他知识应用于光物理和光化学的“光驱动”化学家,并打算激发对激发态行为进行合成控制的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb81/11987026/e9fc72d2a48f/ja5c02096_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验