Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México 07738, México.
Phys Med Biol. 2020 Jul 27;65(15):155005. doi: 10.1088/1361-6560/ab8aaa.
TOPAS-nBio was used to simulate, collision-to-collision, the complete trajectories of electrons in water generated during the explicit simulation of Cu decay. S-values and direct damage to the DNA were calculated representing the cell (C) and the cell nucleus (N) with concentric spheres of 5 μm and 4 μm in radius, respectively. The considered 'target'←'source' configurations, including the cell surface (Cs) and cytoplasm (Cy), were: C←C, C←Cs, N←N, N←Cy and N←Cs. Ionization cluster size distributions were also calculated in a cylinder immersed in water corresponding to a DNA segment of 10 base-pairs in length (diameter 2.3 nm, length 3.4 nm), modeling a radioactive point source moving from the central axis to the edge of the cylinder. For that, the first moment (M) and cumulative probability of having a cluster size of 2 or more ionizations in the cylindrical volume (F) were obtained. Finally, the direct damage to the DNA was estimated by quantifying double-strand breaks (DSBs) using the clustering algorithm DBSCAN. The S-values obtained with TOPAS-nBio for Cu were 7.879 × 10 ± 5 × 10, 4.351 × 10 ± 6 × 10, 1.442 × 10 ± 1 × 10, 2.596 × 10 ± 8 × 10, 1.127 × 10 ± 4 × 10 Gy Bq-s for the configurations C←C, C←Cs, N←N, N←Cy and N←Cs, respectively. The difference of these values, compared with previously reported S-values for Cu with the code MNCP and software MIRDCell, ranged from -4% to -25% for the configurations N←N and N←Cs, respectively. On the other hand, F was maximum with the source at the center of the cylinder 0.373 ± 0.001, and monotonically decreased until reaching a value of 0.058 ± 0.001 at 2.3 nm. The same behavior was observed for M with values ranging from 2.188 ± 0.004 to 0.242 ± 0.002. Finally, the DBSCAN algorithm showed that the mean number of DNA DSBs per decay were 0.187 ± 0.001, 0.0317 ± 0.0005, and 0.0125 ± 0.0002 DSB-(Bq-s) for the configurations N←N, N←Cs, and N←Cy, respectively. In conclusion, the results of the S-values show that the absorbed dose strongly depends on the distribution of the radionuclide in the cell, the dose being higher when Cu is internalized in the cell nucleus, which is reinforced by the nanodosimetric study by the presence of DNA DSBs attributable to the Auger electrons emitted during the decay of Cu.
TOPAS-nBio 用于模拟在明确模拟 Cu 衰变过程中产生的水中电子的完整轨迹,采用碰撞方式。使用 S 值和直接对 DNA 的损伤来代表具有 5μm 和 4μm 半径的同心球体的细胞(C)和细胞核(N)。考虑的“靶标”→“源”配置包括细胞表面(Cs)和细胞质(Cy):C←C、C←Cs、N←N、N←Cy 和 N←Cs。还在浸入水中的圆柱体中计算了离子簇大小分布,该圆柱体对应于长度为 10 个碱基对的 DNA 片段(直径 2.3nm,长度 3.4nm),模拟放射性点源从中央轴移动到圆柱体的边缘。为此,获得了第一矩(M)和圆柱体内具有 2 个或更多电离簇的累积概率(F)。最后,通过使用聚类算法 DBSCAN 来量化双链断裂(DSB),从而估算 DNA 的直接损伤。使用 TOPAS-nBio 获得的 Cu 的 S 值分别为 7.879×10±5×10、4.351×10±6×10、1.442×10±1×10、2.596×10±8×10、1.127×10±4×10Gy Bq-s 对于 C←C、C←Cs、N←N、N←Cy 和 N←Cs 配置。与之前使用 MNCP 代码和 MIRDCell 软件报告的 Cu 的 S 值相比,这些值的差异在 N←N 和 N←Cs 配置中分别为-4%至-25%。另一方面,当源位于圆柱体中心时,F 值最大为 0.373±0.001,并且单调下降,直到在 2.3nm 处达到 0.058±0.001 的值。M 也表现出相同的行为,其值范围为 2.188±0.004 至 0.242±0.002。最后,DBSCAN 算法表明,每个衰变的 DNA DSB 的平均数量分别为 0.187±0.001、0.0317±0.0005 和 0.0125±0.0002DSB-(Bq-s),用于 N←N、N←Cs 和 N←Cy 配置。总之,S 值的结果表明,吸收剂量强烈依赖于放射性核素在细胞中的分布,当 Cu 内化到细胞核中时,剂量更高,这通过归因于 Cu 衰变期间发射的俄歇电子的纳米剂量学研究得到了加强。