Suppr超能文献

采用聚类算法结合混合物理蒙特卡罗模拟对金纳米颗粒放射增敏作用进行建模以定量分析 DNA 双链断裂

Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

出版信息

Med Phys. 2019 Nov;46(11):5314-5325. doi: 10.1002/mp.13813. Epub 2019 Sep 24.

Abstract

PURPOSE

The radiosensitization properties of gold nanoparticles (GNPs) are investigated using a simple Geant4 cell model considering a realistic cell geometry and a clustering algorithm to characterize the number of DNA double-strand breaks (DSBs).

MATERIALS AND METHODS

A mixed-physics approach is taken for accurate modeling of low-energy photon interactions in the different regions of the model using Geant4-DNA physics within the cell, and Livermore physics within gold. Density-based spatial clustering of applications with noise (DBSCAN), a clustering algorithm, is used to directly quantitate DNA DSBs after irradiation. The simulation was run using different sizes of GNPs, different distances of GNPs from the cell nucleus, and several combinations of these two conditions.

RESULTS

Four types of radiation were simulated in the work: 80-keV monoenergetic photons, 100-keV monoenergetic photons, a 250-kVp photon spectrum, and a 6-MV flattening filter free (FFF) photon spectrum. A variable enhancement in DSB yield, nucleus dose, and cell dose was observed when there are GNPs in the cell cytoplasm, and increases with larger GNPs and proximity to the nucleus. The distance of the GNPs from the nucleus has a large impact on the DSB yield and nucleus dose, but little to no effect on the cell dose. The cell dose enhancement factor of 80 keV photons varies from 1.037-1.125 at 0.2 µm for 30-100 nm GNPs to 1.040-1.127 at 4 μm. The DSB enhancement factor varies from 1.050 to 1.174 at 0.2 µm to a marginal effect of <1.01 at 4 μm. For 100 keV, the dose enhancement factor is from 1.142-1.470 at 0.2 µm to 1.106-1.371 at 4 μm. The DSB enhancement factor varies from 1.249-1.813 at 0.2 µm to almost no effect at 4 μm. For 250 kVp, the dose enhancement factor is from 1.117-1.393 at 0.2 μm to 1.110-1.342 at 4 μm. The DSB enhancement factor varies from 1.183-1.600 at 0.2 μm to a marginal effect of ~1.03 at 4 μm. A 6-MV FFF shows a dose enhancement factor of 1.061-1.103 at 0.2 μm and 1.053-1.107 at 4 μm. The DSB yield varies from 1.070-1.143 at 0.2 μm to a marginal effect at 4 μm.

CONCLUSION

The stark difference in behavior for DSB yield when compared to cell dose highlights the importance of evaluating more complex radiobiological quantities rather than dose alone when evaluating the radiosensitization properties from metallic nanomaterials. The nucleus dose showed similar characteristics to the DSB yield demonstrating the ability of the method to predict DNA damage and its relationship with nuclear dose. The proposed method provides a way to explore the radiobiological mechanisms of radiation-induced DNA damages, and it aids to evaluate the physical radiosensitization properties of GNP-aided radiotherapy, which can be easily combined with radiochemical DSB quantitation in order to better understand the intricate DNA damage induction mechanisms that are involved in GNP-aided radiotherapy.

摘要

目的

利用一种考虑真实细胞几何形状和聚类算法的简单 Geant4 细胞模型来研究金纳米颗粒 (GNP) 的放射增敏特性,以表征 DNA 双链断裂 (DSB) 的数量。

材料与方法

采用混合物理方法,在细胞内使用 Geant4-DNA 物理模型和金内的 Livermore 物理模型准确模拟不同区域的低能光子相互作用。基于密度的应用程序噪声聚类算法(DBSCAN)用于在照射后直接定量 DNA DSB。使用不同大小的 GNP、GNP 与细胞核的不同距离以及这两个条件的几种组合来运行模拟。

结果

在这项工作中模拟了四种类型的辐射:80keV 单能光子、100keV 单能光子、250kVp 光子谱和 6MV 无均整器自由(FFF)光子谱。当细胞质中有 GNP 时,观察到 DSB 产额、核剂量和细胞剂量的显著增强,并且随着 GNP 变大和接近细胞核而增加。GNP 与细胞核的距离对 DSB 产额和核剂量有很大影响,但对细胞剂量几乎没有影响。80keV 光子的细胞剂量增强因子在 30-100nm GNP 时为 0.2μm 处的 1.037-1.125,在 4μm 处为 1.040-1.127。DSB 增强因子在 0.2μm 处为 1.050-1.174,在 4μm 处为 1.01 的边际效应。对于 100keV,剂量增强因子在 0.2μm 处为 1.142-1.470,在 4μm 处为 1.106-1.371。DSB 增强因子在 0.2μm 处为 1.249-1.813,在 4μm 处几乎没有影响。对于 250kVp,剂量增强因子在 0.2μm 处为 1.117-1.393,在 4μm 处为 1.110-1.342。DSB 增强因子在 0.2μm 处为 1.183-1.600,在 4μm 处为 1.03 的边际效应。6MV FFF 显示 0.2μm 处的剂量增强因子为 1.061-1.103,4μm 处为 1.053-1.107。DSB 产额在 0.2μm 处为 1.070-1.143,在 4μm 处为 1.01 的边际效应。

结论

与细胞剂量相比,DSB 产额的明显差异突出表明,在评估金属纳米材料的放射增敏特性时,评估更复杂的放射生物学量而不仅仅是剂量非常重要。核剂量与 DSB 产额表现出相似的特征,证明了该方法预测 DNA 损伤及其与核剂量关系的能力。所提出的方法提供了一种探索辐射诱导 DNA 损伤的放射生物学机制的方法,并有助于评估 GNP 辅助放疗的物理放射增敏特性,该方法可以很容易地与放射化学 DSB 定量结合,以更好地了解涉及 GNP 辅助放疗的复杂 DNA 损伤诱导机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验