Suppr超能文献

使用疾病嵌入技术预测进展为终末期肾病的风险。

Use of disease embedding technique to predict the risk of progression to end-stage renal disease.

作者信息

Zhou Fang, Gillespie Avrum, Gligorijevic Djordje, Gligorijevic Jelena, Obradovic Zoran

机构信息

School of Data Science & Engineering, East China Normal University, Shanghai, China.

Division of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.

出版信息

J Biomed Inform. 2020 May;105:103409. doi: 10.1016/j.jbi.2020.103409. Epub 2020 Apr 15.

Abstract

The accurate prediction of progression of Chronic Kidney Disease (CKD) to End Stage Renal Disease (ESRD) is of great importance to clinicians and a challenge to researchers as there are many causes and even more comorbidities that are ignored by the traditional prediction models. We examine whether utilizing a novel low-dimensional embedding model disease2disease (D2D) learned from a large-scale electronic health records (EHRs) could well clusters the causes of kidney diseases and comorbidities and further improve prediction of progression of CKD to ESRD compared to traditional risk factors. The study cohort consists of 2,507 hospitalized Stage 3 CKD patients of which 1,375 (54.8%) progressed to ESRD within 3 years. We evaluated the proposed unsupervised learning framework by applying a regularized logistic regression model and a cox proportional hazard model respectively, and compared the accuracies with the ones obtained by four alternative models. The results demonstrate that the learned low-dimensional disease representations from EHRs can capture the relationship between vast arrays of diseases, and can outperform traditional risk factors in a CKD progression prediction model. These results can be used both by clinicians in patient care and researchers to develop new prediction methods.

摘要

慢性肾脏病(CKD)进展至终末期肾病(ESRD)的准确预测对临床医生至关重要,同时也是研究人员面临的一项挑战,因为传统预测模型忽略了许多病因以及更多的合并症。我们研究了利用从大规模电子健康记录(EHRs)中学习到的新型低维嵌入模型疾病对疾病(D2D)是否能够很好地对肾脏疾病病因和合并症进行聚类,并且与传统风险因素相比,能否进一步改善CKD进展至ESRD的预测。研究队列包括2507名住院的3期CKD患者,其中1375名(54.8%)在3年内进展至ESRD。我们分别应用正则化逻辑回归模型和Cox比例风险模型对所提出的无监督学习框架进行评估,并将准确性与四个替代模型所得结果进行比较。结果表明,从EHRs中学习到的低维疾病表示能够捕捉大量疾病之间的关系,并且在CKD进展预测模型中优于传统风险因素。这些结果可供临床医生用于患者护理,也可供研究人员开发新的预测方法。

相似文献

1
Use of disease embedding technique to predict the risk of progression to end-stage renal disease.
J Biomed Inform. 2020 May;105:103409. doi: 10.1016/j.jbi.2020.103409. Epub 2020 Apr 15.
5
A predictive model of progression of CKD to ESRD in a predialysis pediatric interdisciplinary program.
Clin J Am Soc Nephrol. 2014 Apr;9(4):728-35. doi: 10.2215/CJN.06630613. Epub 2014 Jan 23.
6
Evaluating risk of ESRD in the urban poor.
J Am Soc Nephrol. 2015 Jun;26(6):1434-42. doi: 10.1681/ASN.2014060546. Epub 2014 Dec 4.
10
Risks of Adverse Events in Advanced CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study.
Am J Kidney Dis. 2017 Sep;70(3):337-346. doi: 10.1053/j.ajkd.2017.01.050. Epub 2017 Mar 30.

引用本文的文献

2
Opportunities and challenges for biomarker discovery using electronic health record data.
Trends Mol Med. 2023 Sep;29(9):765-776. doi: 10.1016/j.molmed.2023.06.006. Epub 2023 Jul 18.
3
Machine learning approaches for electronic health records phenotyping: a methodical review.
J Am Med Inform Assoc. 2023 Jan 18;30(2):367-381. doi: 10.1093/jamia/ocac216.
4
Machine learning algorithms' accuracy in predicting kidney disease progression: a systematic review and meta-analysis.
BMC Med Inform Decis Mak. 2022 Aug 1;22(1):205. doi: 10.1186/s12911-022-01951-1.
5
Prediction models used in the progression of chronic kidney disease: A scoping review.
PLoS One. 2022 Jul 26;17(7):e0271619. doi: 10.1371/journal.pone.0271619. eCollection 2022.

本文引用的文献

1
Medical Concept Representation Learning from Multi-source Data.
IJCAI (U S). 2019 Jul;2019:4897-4903. doi: 10.24963/ijcai.2019/680.
2
Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children.
Kidney Int. 2019 Jul;96(1):214-221. doi: 10.1016/j.kint.2019.01.035. Epub 2019 Mar 20.
3
Comparison of the Complexity of Patients Seen by Different Medical Subspecialists in a Universal Health Care System.
JAMA Netw Open. 2018 Nov 2;1(7):e184852. doi: 10.1001/jamanetworkopen.2018.4852.
4
Towards automatic encoding of medical procedures using convolutional neural networks and autoencoders.
Artif Intell Med. 2019 Jan;93:29-42. doi: 10.1016/j.artmed.2018.10.001. Epub 2018 Oct 29.
6
Obesity and kidney disease: hidden consequences of the epidemic.
Clin Kidney J. 2017 Feb;10(1):1-8. doi: 10.1093/ckj/sfw139. Epub 2017 Jan 25.
7
Contribution of temporal data to predictive performance in 30-day readmission of morbidly obese patients.
PeerJ. 2017 Apr 25;5:e3230. doi: 10.7717/peerj.3230. eCollection 2017.
8
US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States.
Am J Kidney Dis. 2017 Mar;69(3 Suppl 1):A7-A8. doi: 10.1053/j.ajkd.2016.12.004.
9
A Dynamic Predictive Model for Progression of CKD.
Am J Kidney Dis. 2017 Apr;69(4):514-520. doi: 10.1053/j.ajkd.2016.07.030. Epub 2016 Sep 29.
10
Large-Scale Discovery of Disease-Disease and Disease-Gene Associations.
Sci Rep. 2016 Aug 31;6:32404. doi: 10.1038/srep32404.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验