Suppr超能文献

智能手机作为双相情感障碍的监测工具:一项包括数据分析、机器学习算法和预测建模的系统综述。

Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling.

作者信息

Antosik-Wójcińska Anna Z, Dominiak Monika, Chojnacka Magdalena, Kaczmarek-Majer Katarzyna, Opara Karol R, Radziszewska Weronika, Olwert Anna, Święcicki Łukasz

机构信息

Department of Affective Disorders, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland.

Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland.

出版信息

Int J Med Inform. 2020 Jun;138:104131. doi: 10.1016/j.ijmedinf.2020.104131. Epub 2020 Mar 31.

Abstract

BACKGROUND

Bipolar disorder (BD) is a chronic illness with a high recurrence rate. Smartphones can be a useful tool for detecting prodromal symptoms of episode recurrence (through real-time monitoring) and providing options for early intervention between outpatient visits.

AIMS

The aim of this systematic review is to overview and discuss the studies on the smartphone-based systems that monitor or detect the phase change in BD. We also discuss the challenges concerning predictive modelling.

METHODS

Published studies were identified through searching the electronic databases. Predictive attributes reflecting illness activity were evaluated including data from patients' self-assessment ratings and objectively measured data collected via smartphone. Articles were reviewed according to PRISMA guidelines.

RESULTS

Objective data automatically collected using smartphones (voice data from phone calls and smartphone-usage data reflecting social and physical activities) are valid markers of a mood state. The articles surveyed reported accuracies in the range of 67% to 97% in predicting mood status. Various machine learning approaches have been analyzed, however, there is no clear evidence about the superiority of any of the approach.

CONCLUSIONS

The management of BD could be significantly improved by monitoring of illness activity via smartphone.

摘要

背景

双相情感障碍(BD)是一种复发率很高的慢性疾病。智能手机可成为检测发作复发前驱症状(通过实时监测)并在门诊就诊期间提供早期干预选项的有用工具。

目的

本系统评价的目的是概述和讨论关于监测或检测双相情感障碍病情变化的基于智能手机系统的研究。我们还讨论了预测建模方面的挑战。

方法

通过检索电子数据库识别已发表的研究。评估反映疾病活动的预测属性,包括患者自我评估评分数据和通过智能手机客观测量收集的数据。文章根据PRISMA指南进行综述。

结果

使用智能手机自动收集的客观数据(来自通话的语音数据以及反映社交和身体活动的智能手机使用数据)是情绪状态的有效指标。所调查的文章报告预测情绪状态的准确率在67%至97%之间。已经分析了各种机器学习方法,然而,没有明确证据表明任何一种方法具有优越性。

结论

通过智能手机监测疾病活动可显著改善双相情感障碍的管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验