Suppr超能文献

黑碳使亚马孙黑土富含短程有序的水铁矿:相互作用机制及环境意义。

Black carbon enriches short-range-order ferrihydrite in Amazonian Dark Earth: Interplay mechanism and environmental implications.

机构信息

Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.

X-ray Imaging Group, National Synchrotron Radiation Center, Hsinchu, Taiwan.

出版信息

Sci Total Environ. 2020 Jul 10;725:138195. doi: 10.1016/j.scitotenv.2020.138195. Epub 2020 Mar 24.

Abstract

Our study underpins the mechanism of organo-mineral interaction between black carbon (BC, biochar) and associated minerals in the historical BC-rich Amazonian Dark Earth (ADE) by using synchrotron-based microscopic (TXM), microspectroscopic (μFTIR) and spectroscopic (XAS and μ-diffraction) approaches. The BC-rich ADE contained over 100% more poorly crystalline minerals than the adjacent tropical soil. Linear combination fitting of k-spacing in the X-ray Absorption Spectra (XAS) revealed that ferrihydrite contributed to 81.1% of the Fe-minerals in BC. A small but distinct peak was observed at 5.7 Å in the extended X-ray absorption fine structure k oscillation of BC, revealing the presence of FeC (including Fe-O-C) covalent bonds. No FeC path was yielded by the XAS fitting when an obvious peak downshift of the first (FeFe) shell was observed, suggesting that the availability of inner-sphere FeC complexation was limited to the BC surface and interphase region. The main minerals for organo-mineral complexation were short-range-order (SRO) ferrihydrite on BC instead of corner-sharing FeO octahedra. Compared to ADE, the coordination number of the first (FeFe) and second (FeFe) shell was higher in BC, revealing a higher degree of order in coordination between the neighboring Fe mineral crystals. Black C limited the progressive aging of amorphous Fe phases and greatly enriched SRO ferrihydrite in the redox-fluctuating and high-leaching environment. The transformation of SRO ferrihydrite into the more crystalline Fe oxides was controlled by the local pH environment. A strong signal from the complexed phenolic group (aryl-OH, 1241 cm) and a distinct band of inner-sphere complexation (Fe-aryl C, 1380-1384 cm) were identified in the FTIR spectra. The enrichment of poorly crystalline minerals can have positive feedback on the long-term stabilization of BC. The scale-up application of biochar to agricultural and ecological systems may have a long-lasting impact on the enrichment and transformation of the SRO minerals in the soil.

摘要

我们使用基于同步加速器的微观(TXM)、微光谱(μFTIR)和光谱(XAS 和 μ 衍射)方法,研究了黑碳(BC,生物炭)与历史上富含 BC 的亚马逊黑土(ADE)中相关矿物质之间的有机-矿物相互作用的机制。富含 BC 的 ADE 比相邻的热带土壤含有超过 100%的非晶质矿物。X 射线吸收光谱(XAS)中 k 间距的线性组合拟合表明,水铁矿对 BC 中的 Fe 矿物的贡献为 81.1%。在 BC 的扩展 X 射线吸收精细结构 k 振荡中观察到一个小但明显的 5.7 Å 峰,表明存在 FeC(包括 Fe-O-C)共价键。当观察到第一(FeFe)壳明显的向下峰移时,XAS 拟合没有产生 FeC 途径,这表明内球 FeC 络合的可用性仅限于 BC 表面和相间区域。有机-矿物络合的主要矿物是短程有序(SRO)水铁矿而不是共用角 FeO 八面体。与 ADE 相比,BC 中第一(FeFe)和第二(FeFe)壳的配位数更高,这表明相邻 Fe 矿物晶体之间的配位具有更高的有序度。黑碳限制了非晶态 Fe 相的渐进老化,并在氧化还原波动和高浸出环境中极大地富集了 SRO 水铁矿。SRO 水铁矿向更结晶的 Fe 氧化物的转化受局部 pH 环境的控制。FTIR 光谱中鉴定到复杂酚基(芳基-OH,1241 cm)的强信号和内球络合(Fe-芳基 C,1380-1384 cm)的明显带。非晶质矿物的富集对 BC 的长期稳定具有正反馈作用。生物炭在农业和生态系统中的规模化应用可能对土壤中 SRO 矿物的富集和转化产生持久影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验