Suppr超能文献

用于非靶向代谢组学的 MS 和 LC 文库:提高方法开发和鉴定可信度。

MS and LC libraries for untargeted metabolomics: Enhancing method development and identification confidence.

机构信息

Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck, Kiel, Germany.

Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.

出版信息

J Chromatogr B Analyt Technol Biomed Life Sci. 2020 May 15;1145:122105. doi: 10.1016/j.jchromb.2020.122105. Epub 2020 Apr 4.

Abstract

As part of the "omics" technologies in the life sciences, metabolomics is becoming increasingly important. In untargeted metabolomics, unambiguous metabolite identification and the inevitable coverage bias that comes with the selection of analytical conditions present major challenges. Reliable compound annotation is essential for translating metabolomics data into meaningful biological information. Here, we developed a fast and transferable method for generating in-house MS libraries to improve metabolite identification. Using the new method we established an in-house MS library that includes over 4,000 fragmentation spectra of 506 standard compounds for 6 different normalized collision energies (NCEs). Additionally, we generated a comprehensive liquid chromatography (LC) library by testing 57 different LC-MS conditions for 294 compounds. We used the library information to develop an untargeted metabolomics screen with maximum coverage of the metabolome that was successfully tested in a study of 360 human serum samples. The current work demonstrates a workflow for LC-MS/MS-based metabolomics, with enhanced metabolite identification confidence and the possibility to select suitable analysis conditions according to the specific research interest.

摘要

作为生命科学中“组学”技术的一部分,代谢组学变得越来越重要。在非靶向代谢组学中,明确的代谢物鉴定以及分析条件选择带来的不可避免的覆盖偏差是主要挑战。可靠的化合物注释对于将代谢组学数据转化为有意义的生物学信息至关重要。在这里,我们开发了一种快速且可转移的方法来生成内部 MS 库,以提高代谢物鉴定的能力。使用我们建立的新方法,我们建立了一个内部 MS 库,其中包含超过 4000 种 506 种标准化合物在 6 种不同归一化碰撞能 (NCE) 下的碎片光谱。此外,我们通过对 294 种化合物的 57 种不同 LC-MS 条件进行测试,生成了一个全面的 LC 库。我们使用库信息开发了一种非靶向代谢组学筛选方法,该方法对 360 个人血清样本的研究进行了成功测试,具有最大的代谢组覆盖范围。目前的工作展示了一种基于 LC-MS/MS 的代谢组学工作流程,提高了代谢物鉴定的可信度,并有可能根据特定的研究兴趣选择合适的分析条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验