Suppr超能文献

通过时间交错的前体离子列表靶向定向数据依赖采集提高 LC-MS 基非靶向代谢组学中代谢物鉴定的 MS/MS 覆盖度。

Enhanced MS/MS coverage for metabolite identification in LC-MS-based untargeted metabolomics by target-directed data dependent acquisition with time-staggered precursor ion list.

机构信息

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China.

Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

出版信息

Anal Chim Acta. 2017 Nov 1;992:67-75. doi: 10.1016/j.aca.2017.08.044. Epub 2017 Sep 13.

Abstract

Metabolite identification is one of the major bottlenecks in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics owing to the difficulty of acquiring MS/MS information of most metabolites detected. Data dependent acquisition (DDA) has been currently used to acquire MS/MS data in untargeted metabolomics. When dealing with the complex biological samples, top-n-based DDA method selects only a small fraction of the ions for fragmentation, leading to low MS/MS coverage of metabolites in untargeted metabolomics. In this study, we proposed a novel DDA method to improve the performance of MS/MS acquisition in LC-MS-based untargeted metabolomics using target-directed DDA (t-DDA) with time-staggered precursor ion lists (ts-DDA). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment, ion filtration, and ion fusion, the target precursor ion list was generated for subsequent t-DDA and ts-DDA. Compared to the conventional DDA, the ts-DDA exhibits the better MS/MS coverage of metabolomes in a plasma sample, especially for the low abundant metabolites. Even in high co-elution zones, the ts-DDA also showed the superiority in acquiring MS/MS information of co-eluting ions, as evidenced by better MS/MS coverage and MS/MS efficiency, which was mainly attributed to the pre-selection of precursor ion and the reduced number of concurrent ions. The newly developed method might provide more informative MS/MS data of metabolites, which will be helpful to increase the confidence of metabolite identification in untargeted metabolomics.

摘要

代谢物鉴定是基于液相色谱-质谱(LC-MS)的非靶向代谢组学中的主要瓶颈之一,因为很难获得大多数检测到的代谢物的 MS/MS 信息。目前在非靶向代谢组学中使用数据依赖采集(DDA)来获取 MS/MS 数据。在处理复杂的生物样本时,基于 top-n 的 DDA 方法仅选择一小部分离子进行碎裂,导致非靶向代谢组学中代谢物的 MS/MS 覆盖率较低。在这项研究中,我们提出了一种新的 DDA 方法,使用具有时间交错的前体离子列表(ts-DDA)的目标定向 DDA(t-DDA)来提高 LC-MS 基于非靶向代谢组学中 MS/MS 采集的性能。全扫描非靶向分析用于提取目标离子。在峰对齐、离子过滤和离子融合后,生成目标前体离子列表,用于随后的 t-DDA 和 ts-DDA。与传统的 DDA 相比,ts-DDA 在血浆样本中表现出更好的代谢组 MS/MS 覆盖率,特别是对于低丰度代谢物。即使在高共洗脱区域,ts-DDA 也在获取共洗脱离子的 MS/MS 信息方面表现出优势,这表现为更好的 MS/MS 覆盖率和 MS/MS 效率,这主要归因于前体离子的预选和并发离子数量的减少。新开发的方法可能提供更多有信息的代谢物 MS/MS 数据,这将有助于提高非靶向代谢组学中代谢物鉴定的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验