Suppr超能文献

使用多目标元启发式优化对帕金森病与嗓音变化特征进行关联分析。

Association analysis of Parkinson disease with vocal change characteristics using multi-objective metaheuristic optimization.

作者信息

Altay Elif Varol, Alatas Bilal

机构信息

Department of Software Engineering, Firat University, Elazig, Turkey.

出版信息

Med Hypotheses. 2020 Aug;141:109722. doi: 10.1016/j.mehy.2020.109722. Epub 2020 Apr 11.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that has important economic and social effects influencing the quality of patient life. Diagnosis of PD is performed in terms of certain criteria depending on the clinical symptom evaluation. However, this method may be inadequate, especially during the onset of the disease. Acoustic analysis of PD is a cost-effective, easy, and non-invasive method for early diagnosis. The mining of association rules is one of the problems in data mining that aims to find valuable and interesting associations in huge data sets. Although association analysis is very popular and useful, to the best of our knowledge, there is not any study on association analysis of PD using vocal change characteristics. Automatic mining of comprehensible, interesting, and accurate association rules in PD data sets containing huge numerical processed voice data is aimed in this study. Due to the numerical characteristics of the vocal attributes in pre-processed PD data, classical association rules mining methods cannot be efficiently applied to this problem. For this reason; MOPNAR, NICGAR, and QAR_CIP_NSGAII that are artificial intelligence-based algorithms were modeled for mining of numerical association rules in order to obtain better performances without using any pre-process for numerical data for the first time. Furthermore, the problem of association analysis of PD with vocal change characteristics was modeled as a multi-objective optimization problem considering many different complementary/contradictory metrics such as support, confidence, comprehensibility, interestingness, etc. in this study. According to the obtained multi-objective rule sets, the NICGAR outperformed in terms of average confidence, average CF, average netconf, average yulesQ, and average number of attributes.

摘要

帕金森病(PD)是一种神经退行性疾病,对经济和社会有着重要影响,会影响患者的生活质量。PD的诊断是依据某些标准,通过临床症状评估来进行的。然而,这种方法可能并不充分,尤其是在疾病发作期间。对PD进行声学分析是一种经济高效、简便且无创的早期诊断方法。关联规则挖掘是数据挖掘中的一个问题,旨在从海量数据集中找到有价值且有趣的关联关系。尽管关联分析非常流行且有用,但据我们所知,尚无关于利用嗓音变化特征对PD进行关联分析的研究。本研究旨在从包含大量经过数值处理的语音数据的PD数据集中自动挖掘可理解、有趣且准确的关联规则。由于预处理后的PD数据中嗓音属性具有数值特征,经典的关联规则挖掘方法无法有效地应用于这个问题。因此,首次对基于人工智能的算法MOPNAR、NICGAR和QAR_CIP_NSGAII进行建模,用于挖掘数值关联规则,以便在不使用任何数值数据预处理的情况下获得更好的性能。此外,在本研究中,将具有嗓音变化特征的PD关联分析问题建模为一个多目标优化问题,考虑了许多不同的互补/矛盾指标,如支持度、置信度、可理解性、趣味性等。根据获得的多目标规则集,NICGAR在平均置信度、平均CF、平均净置信度、平均尤尔Q和平均属性数量方面表现更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验