Ma Lijia, Wang Shiqiang, Lin Qiuzhen, Li Jianqiang, You Zhuhong, Huang Jiaxiang, Gong Maoguo
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2598-2611. doi: 10.1109/TCBB.2020.2985838. Epub 2021 Dec 8.
The global alignment of biological networks (GABN) aims to find an optimal alignment between proteins across species, such that both the biological structures and the topological structures of the proteins are maximally conserved. The research on GABN has attracted great attention due to its applications on species evolution, orthology detection and genetic analyses. Most of the existing methods for GABN are difficult to obtain a good tradeoff between the conservation of the biological structures and topological structures. In this paper, we propose a multi-neighborhood learning method for solving GABN (called as CLMNA). CLMNA first models GABN as an optimization of a weighted similarity which evaluates the conserved biological and topological similarities of an alignment, and then it combines a first-proximity, second-proximity and individual-aware proximity learning algorithm to solve the modeled problem. Finally, systematic experiments on 10 pairs of biological networks across 5 species show the superiority of CLMNA over the state-of-the-art network alignment algorithms. They also validate the effectiveness of CLMNA as a refinement method on improving the performance of the compared algorithms.
生物网络全局比对(GABN)旨在找到跨物种蛋白质之间的最优比对,以使蛋白质的生物结构和拓扑结构都能得到最大程度的保留。由于其在物种进化、直系同源检测和遗传分析中的应用,GABN研究受到了广泛关注。现有的大多数GABN方法难以在生物结构和拓扑结构的保留之间取得良好的平衡。在本文中,我们提出了一种用于解决GABN的多邻域学习方法(称为CLMNA)。CLMNA首先将GABN建模为加权相似度的优化问题,该加权相似度用于评估比对中保留的生物和拓扑相似性,然后结合一阶邻域、二阶邻域和个体感知邻域学习算法来解决所建模的问题。最后,对5个物种的10对生物网络进行的系统实验表明,CLMNA优于现有最先进的网络比对算法。这些实验还验证了CLMNA作为一种优化方法在提高对比算法性能方面的有效性。