Suppr超能文献

基于 CT 的放射组学特征可区分前纵隔肿块为胸腺瘤与淋巴瘤。

Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas.

机构信息

Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 4, 20090, Pieve Emanuele, Milano, Italy.

Radiotherapy, Humanitas Cancer Center, Humanitas Clinical and Research Center - IRCCS, via Manzoni, 56, 20089, Rozzano, Milano, Italy.

出版信息

Radiol Med. 2020 Oct;125(10):951-960. doi: 10.1007/s11547-020-01188-w. Epub 2020 Apr 18.

Abstract

OBJECTIVES

We aimed to assess the ability of radiomics, applied to not-enhanced computed tomography (CT), to differentiate mediastinal masses as thymic neoplasms vs lymphomas.

METHODS

The present study was an observational retrospective trial. Inclusion criteria were pathology-proven thymic neoplasia or lymphoma with mediastinal localization, availability of CT. Exclusion criteria were age < 16 years and mediastinal lymphoma lesion < 4 cm. We selected 108 patients (M:F = 47:61, median age 48 years, range 17-79) and divided them into a training and a validation group. Radiomic features were used as predictors in linear discriminant analysis. We built different radiomic models considering segmentation software and resampling setting. Clinical variables were used as predictors to build a clinical model. Scoring metrics included sensitivity, specificity, accuracy and area under the curve (AUC). Wilcoxon paired test was used to compare the AUCs.

RESULTS

Fifty-five patients were affected by thymic neoplasia and 53 by lymphoma. In the validation analysis, the best radiomics model sensitivity, specificity, accuracy and AUC resulted 76.2 ± 7.0, 77.8 ± 5.5, 76.9 ± 6.0 and 0.84 ± 0.06, respectively. In the validation analysis of the clinical model, the same metrics resulted 95.2 ± 7.0, 88.9 ± 8.9, 92.3 ± 8.5 and 0.98 ± 0.07, respectively. The AUCs of the best radiomic and the clinical model not differed.

CONCLUSIONS

We developed and validated a CT-based radiomic model able to differentiate mediastinal masses on non-contrast-enhanced images, as thymic neoplasms or lymphoma. The proposed method was not affected by image postprocessing. Therefore, the present image-derived method has the potential to noninvasively support diagnosis in patients with prevascular mediastinal masses with major impact on management of asymptomatic cases.

摘要

目的

我们旨在评估放射组学(应用于未增强 CT)区分纵隔肿块为胸腺瘤与淋巴瘤的能力。

方法

本研究为观察性回顾性试验。纳入标准为病理学证实的胸腺瘤或淋巴瘤伴纵隔定位,有 CT 可用。排除标准为年龄<16 岁和纵隔淋巴瘤病灶<4cm。我们选择了 108 名患者(男:女=47:61,中位年龄 48 岁,范围 17-79 岁),并将其分为训练组和验证组。放射组学特征被用作线性判别分析的预测因子。我们考虑分割软件和重采样设置,构建了不同的放射组学模型。临床变量被用作预测因子来构建临床模型。评分指标包括敏感性、特异性、准确性和曲线下面积(AUC)。采用 Wilcoxon 配对检验比较 AUC。

结果

55 名患者患有胸腺瘤,53 名患有淋巴瘤。在验证分析中,最佳放射组学模型的敏感性、特异性、准确性和 AUC 分别为 76.2±7.0、77.8±5.5、76.9±6.0 和 0.84±0.06。在临床模型的验证分析中,同样的指标分别为 95.2±7.0、88.9±8.9、92.3±8.5 和 0.98±0.07。最佳放射组学模型和临床模型的 AUC 没有差异。

结论

我们开发并验证了一种基于 CT 的放射组学模型,能够区分非增强 CT 图像上的纵隔肿块,即胸腺瘤或淋巴瘤。该方法不受图像后处理的影响。因此,该基于图像的方法有可能为无症状患者的前血管性纵隔肿块提供非侵入性辅助诊断,对无症状病例的处理有重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验