Suppr超能文献

开发和验证深度学习放射组学列线图,用于术前区分胸腺瘤组织学亚型。

Development and validation of a deep learning radiomics nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes.

机构信息

Department of Radiology, Jiangmen Central Hospital, Jiangmen, Guangdong Province, 529030, People's Republic of China.

Laboratory of Artificial Intelligence of Biomedicine, Guilin University of Aerospace Technology, Guilin, Guangxi Province, 541004, People's Republic of China.

出版信息

Eur Radiol. 2023 Oct;33(10):6804-6816. doi: 10.1007/s00330-023-09690-1. Epub 2023 May 6.

Abstract

OBJECTIVES

Using contrast-enhanced computed tomography (CECT) and deep learning technology to develop a deep learning radiomics nomogram (DLRN) to preoperative predict risk status of patients with thymic epithelial tumors (TETs).

METHODS

Between October 2008 and May 2020, 257 consecutive patients with surgically and pathologically confirmed TETs were enrolled from three medical centers. We extracted deep learning features from all lesions using a transformer-based convolutional neural network and created a deep learning signature (DLS) using selector operator regression and least absolute shrinkage. The predictive capability of a DLRN incorporating clinical characteristics, subjective CT findings and DLS was evaluated by the area under the curve (AUC) of a receiver operating characteristic curve.

RESULTS

To construct a DLS, 25 deep learning features with non-zero coefficients were selected from 116 low-risk TETs (subtypes A, AB, and B1) and 141 high-risk TETs (subtypes B2, B3, and C). The combination of subjective CT features such as infiltration and DLS demonstrated the best performance in differentiating TETs risk status. The AUCs in the training, internal validation, external validation 1 and 2 cohorts were 0.959 (95% confidence interval [CI]: 0.924-0.993), 0.868 (95% CI: 0.765-0.970), 0.846 (95% CI: 0.750-0.942), and 0.846 (95% CI: 0.735-0.957), respectively. The DeLong test and decision in curve analysis revealed that the DLRN was the most predictive and clinically useful model.

CONCLUSIONS

The DLRN comprised of CECT-derived DLS and subjective CT findings showed a high performance in predicting risk status of patients with TETs.

CLINICAL RELEVANCE STATEMENT

Accurate risk status assessment of thymic epithelial tumors (TETs) may aid in determining whether preoperative neoadjuvant treatment is necessary. A deep learning radiomics nomogram incorporating enhancement CT-based deep learning features, clinical characteristics, and subjective CT findings has the potential to predict the histologic subtypes of TETs, which can facilitate decision-making and personalized therapy in clinical practice.

KEY POINTS

• A non-invasive diagnostic method that can predict the pathological risk status may be useful for pretreatment stratification and prognostic evaluation in TET patients. • DLRN demonstrated superior performance in differentiating the risk status of TETs when compared to the deep learning signature, radiomics signature, or clinical model. • The DeLong test and decision in curve analysis revealed that the DLRN was the most predictive and clinically useful in differentiating the risk status of TETs.

摘要

目的

利用增强计算机断层扫描(CECT)和深度学习技术,开发一种深度学习放射组学列线图(DLRN),以术前预测胸腺瘤(TETs)患者的风险状态。

方法

2008 年 10 月至 2020 年 5 月,我们从三个医疗中心连续纳入 257 例经手术和病理证实的 TET 患者。我们使用基于转换器的卷积神经网络从所有病变中提取深度学习特征,并使用选择器算子回归和最小绝对值收缩创建深度学习特征(DLS)。通过接收者操作特征曲线的曲线下面积(AUC)评估包含临床特征、主观 CT 发现和 DLS 的 DLRN 的预测能力。

结果

为构建 DLS,从 116 例低风险 TETs(A、AB 和 B1 亚型)和 141 例高风险 TETs(B2、B3 和 C 亚型)中选择了 25 个具有非零系数的深度学习特征。主观 CT 特征(如浸润)与 DLS 的组合在区分 TET 风险状态方面表现出最佳性能。训练、内部验证、外部验证 1 和 2 队列的 AUC 分别为 0.959(95%置信区间[CI]:0.924-0.993)、0.868(95%CI:0.765-0.970)、0.846(95%CI:0.750-0.942)和 0.846(95%CI:0.735-0.957)。DeLong 检验和决策曲线分析表明,DLRN 是最具预测性和临床实用性的模型。

结论

由 CECT 衍生的 DLS 和主观 CT 发现组成的 DLRN 在预测 TET 患者风险状态方面表现出较高的性能。

临床相关性声明

准确评估胸腺瘤(TETs)的风险状态可能有助于确定术前新辅助治疗是否必要。一种包含增强 CT 深度学习特征、临床特征和主观 CT 发现的深度学习放射组学列线图有可能预测 TET 的组织学亚型,这有助于指导临床实践中的决策和个性化治疗。

关键点

  1. 一种可以预测病理风险状态的非侵入性诊断方法,可能对 TET 患者的术前分层和预后评估有用。

  2. DLRN 在区分 TET 风险状态方面的表现优于深度学习特征、放射组学特征或临床模型。

  3. DeLong 检验和决策曲线分析表明,DLRN 在区分 TET 风险状态方面是最具预测性和临床实用性的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验